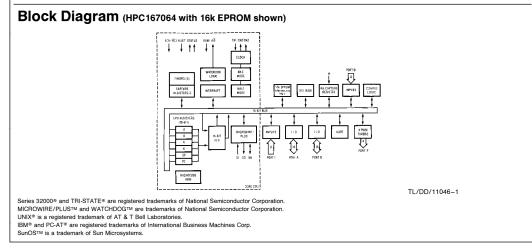
Ň National Semiconductor

HPC167064/HPC467064 High-Performance microController with a 16k UV Erasable CMOS EPROM

General Description

The HPC167064 is a member of the HPC family of High Performance microControllers. Each member of the family has the same core CPU with a unique memory and I/O configuration to suit specific applications. The HPC167064 has a 16 kbyte, high-speed, UV-erasable, electrically programmable CMOS EPROM. This is ideally suited for applications where fast turnaround, pattern experimentation, and code confidentiality are important requirements. The HPC167064 can serve as a stand-alone emulator for either the HPC16064 or the HPC16083. Two configuration registers have been added for emulation of the different chips. The on-chip EPROM replaces the presently available user ROM space. The on-chip EPROM can be programmed via a DATA I/O UNISITE. There are security features added to the chip to implement READ, ENCRYPTED READ, and WRITE privileges for the on-chip EPROM. These defined privileges are intended to deter theft, alteration, or unintentional destruction of user code. Each part is fabricated in National's advanced microCMOS technology. This process combined with an advanced architecture provides fast, flexible I/O control, efficient data manipulation, and high speed computation.

The HPC devices are complete microcomputers on a single chip. All system timing, internal logic, EPROM, RAM, and I/O are provided on the chip to produce a cost effective solution for high performance applications. On-chip functions such as UART, up to eight 16-bit timers with 4 input capture registers, vectored interrupts, WATCHDOG™ logic and MICROWIRE/PLUS™ provide a high level of system integration. The ability to address up to 64k bytes of external memory enables the HPC to be used in powerful applications typically performed by microprocessors and expensive peripheral chips.


The microCMOS process results in very low current drain and enables the user to select the optimum speed/power product for his system. The IDLE and HALT modes provide further current savings. The HPC167064 is available only in 68-pin LDCC package.

PRELIMINARY

August 1992

Features

- HPC family—core features:
- 16-bit architecture, both byte and word operations - 16-bit data bus, ALU, and registers
- 64 kbytes of direct memory addressing
- FAST-200 ns for fastest instruction when using
- 20.0 MHz clock. 134 ns at 30.0 MHz High code efficiency-most instructions are single
- byte 16 x 16 multiply and 32 x 16 divide
- Eight vectored interrupt sources
- Four 16-bit timer/counters with 4 synchronous outputs and WATCHDOG logic
- MICROWIRE/PLUS serial I/O interface
- CMOS-very low power with two power save modes: IDLE and HALT
- 16 kbytes high speed UV erasable: electrically programmable CMOS EPROM
- Stand-alone emulation of HPC16083 and HPC16064 family
- EPROM and configuration bytes programmable by DATA I/O UNISITE with Pinsite Module
- Four selectable levels of security to protect on-chip EPROM contents
- UART—full duplex, programmable baud rate
- Four additional 16-bit timer/counters with pulse width modulated outputs
- Four input capture registers
- 52 general purpose I/O lines (memory mapped)
- Commercial (0°C to +70°C), and military (-55°C to +125°C) temperature ranges for 20.0 MHz, commercial (0°C to +70°C) for 30.0 MHz

© 1995 National Semiconductor Corporation TL/DD11046 RRD-B30M105/Printed in U. S. A.

with a 16k UV HPC167064/HPC467064 High-Performance microControlle Erasable CMOS EPROM

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. V_{CC} with Respect to GND

-0.5V to 7.0V

 Total Allowable Source or Sink Current
 100 mA

 Storage Temperature Range
 -65°C to +150°C

 Lead Temperature (Soldering, 10 sec.)
 300°C

All Other Pins $(V_{CC} + 0.5V)$ to (GND - 0.5V) Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics

 V_{CC} = 5.0V $\pm5\%$ unless otherwise specified, T_A = $-55^\circ C$ to $+125^\circ C$ for HPC167064 and V_{CC} = 5.0V \pm 10% unless otherwise specified, T_A = $0^\circ C$ to $70^\circ C$ for HPC467064

Symbol	Parameter	Test Conditions	Min	Max	Units
I _{CC1}	Supply Current	$ \begin{array}{l} V_{CC} = max, f_{IN} = 30.0 \mbox{ MHz} \mbox{ (Note 1)} \\ V_{CC} = max, f_{IN} = 20.0 \mbox{ MHz} \mbox{ (Note 1)} \\ V_{CC} = max, f_{IN} = 2.0 \mbox{ MHz} \mbox{ (Note 1)} \end{array} $		85 70 40	mA mA mA
I _{CC2}	IDLE Mode Current			6.0 4.5 1	mA mA mA
I _{CC3}	HALT Mode Current	$\label{eq:VCC} \begin{array}{l} V_{CC}=\mbox{max},\mbox{f}_{IN}=\mbox{0 kHz},\mbox{(Note 1)}\\ V_{CC}=\mbox{2.5V},\mbox{f}_{IN}=\mbox{0 kHz},\mbox{(Note 1)} \end{array}$		400 100	μΑ μΑ
	LTAGE LEVELS FOR SCHMITT TRIGGERED I	NPUTS $\overline{\text{RESET}}$, NMI, AND $\overline{\text{WO}}$; AND AL	SO CKI		
V _{IH1}	Logic High		0.9 V _{CC}		V
V_{IL1}	Logic Low			0.1 V _{CC}	V
ALL OTHE	RINPUTS				
V _{IH2}	Logic High		0.7 V _{CC}	*	V
V _{IL2}	Logic Low		*	0.2 V _{CC}	V
I _{LI1}	Input Leakage Current	$V_{IN} = 0$ and $V_{IN} = V_{CC}$ (Note 4)		±2	μA
I _{LI2}	Input Leakage Current RDY/HLD, EXUI	$V_{IN} = 0$	-3	-50	μA
I _{LI3}	Input Leakage Current B12	$\overline{\text{RESET}} = 0, V_{\text{IN}} = V_{\text{CC}}$	0.5	7	μA
I _{LI4}	Input Leakage Current EXM	$V_{\text{IN}}=$ 0 and $V_{\text{IN}}=V_{\text{CC}}$ (Note 4)	±10		μA
Cl	Input Capacitance	(Note 2)		10	pF
C _{IO}	I/O Capacitance	(Note 2)		20	pF
Ουτρυτ ν	OLTAGE LEVELS				
V _{OH1} V _{OL1}	Logic High (CMOS) Logic Low (CMOS)	$I_{OH} = -10 \ \mu A$ (Note 2) $I_{OH} = 10 \ \mu A$ (Note 2)	V _{CC} - 0.1	0.1	v
V _{OH2} V _{OL2}	Port A/B Drive, CK2 (A0–A15, B10, B11, B12, B15)	$I_{OH} = -7 \text{ mA}$ $I_{OL} = 3 \text{ mA}$	2.4	0.4	v
V _{OH3} V _{OL3}	Other Port Pin Drive, WO (open drain) (B0-B9, B13, B14, P0-P3)	$I_{OH} = -1.6 \text{ mA} \text{ (except } \overline{\text{WO}}\text{)}$ $I_{OL} = 0.5 \text{ mA}$	2.4	0.4	v
V _{OH4} V _{OL4}	ST1 and ST2 Drive	$I_{OH} = -6 \text{ mA}$ $I_{OL} = 1.6 \text{ mA}$	2.4	0.4	v
V _{OH5} V _{OL5}	Port A/B Drive (A0-15, B10, B11, B12, B15) when used as External Address/Data Bus	$I_{OH} = -1 \text{ mA}$ $I_{OL} = 3 \text{ mA}$	2.4	0.4	v
V _{RAM}	RAM Keep-Alive Voltage	(Note 3)	2.5	V _{CC}	V
I _{OZ}	TRI-STATE® Leakage Current	$V_{IN} = 0$ and $V_{IN} = V_{CC}$		±5	μA

Note 1: I_{CC_1} , I_{CC_2} , I_{CC_3} measured with no external drive (I_{OH} and $I_{OL} = 0$, I_{IH} , $I_{IL} = 0$ and EXM = V_{CC}). I_{CC1} is measured with $\overline{\text{RESET}} = \text{GND}$. I_{CC3} is measured with NMI = V_{CC} . CKI driven to V_{IH1} and V_{IL1} with rise and fall times less than 10 ns.

Note 2: This is guaranteed by design and not tested.

Note 3: Test duration is 100 ms.

Note 4: The EPROM mode of operation for this device requires high voltage input on pins EXM/V_{PP}, I3, I4, I5, I6 and I7. This will increase the input leakage current above the normal specification when driven to voltages greater than V_{CC} + 0.3V. *See NORMAL RUNNING MODE.

(See No	electrical Charac	thru 5). $V_{CC} = 5V \pm 5\%^*$, $T_A = -55^{\circ}C$ to $+125^{\circ}C$ fo	r HPC16	7064 and	V _{CC} = 5'	V ±10%,
IA - U	Symbol and Formula	Parameter	Min	Max	Units	Notes
Clocks	f_{C} $t_{C1} = 1/f_{C}$ t_{CKIH} t_{CKIL} $t_{C} = 2/f_{C}$ $t_{WAIT} = t_{C}$ t_{DC1C2R} t_{DC1C2F}	CKI Operating Frequency CKI Clock Period CKI High Time CKI Low Time CPU Timing Cycle CPU Wait State Period Delay of CK2 Rising Edge after CKI Falling Edge Delay of CK2 Falling Edge after CKI Falling Edge	2 50 22.5 22.5 100 100 0 0	20 500 55 55	MHz ns ns ns ns ns ns ns	(Note 2) (Note 2)
	$f_U = f_C/8$ f_{MW}	External UART Clock Input Frequency External MICROWIRE/PLUS Clock Input Frequency		2.5** 1.25	MHz MHz	
Timers				0.91	MHz ns	
/Plus	t _{UWS}	MICROWIRE Setup Time—Master MICROWIRE Setup Time—Slave	100 20		ns	
Microwire/Plus	t _{UWH}	MICROWIRE Hold Time—Master MICROWIRE Hold Time—Slave	20 50		ns	
Micr	t _{UWV}	MICROWIRE Output Valid Time—Master MICROWIRE Output Valid Time—Slave		50 150	ns	
External Hold	$\begin{array}{c} t_{SALE} = \frac{3}{4} t_{C} + 40 \\ t_{HWP} = t_{C} + 10 \\ t_{HAE} = t_{C} + 100 \\ t_{HAD} = \frac{3}{4} t_{C} + 85 \\ t_{BF} = \frac{1}{2} t_{C} + 66 \\ t_{BE} = \frac{1}{2} t_{C} + 66 \end{array}$	HLD Falling Edge before ALE Rising Edge HLD Pulse Width HLDA Falling Edge after HLD Falling Edge HLDA Rising Edge after HLD Rising Edge Bus Float after HLDA Falling Edge Bus Enable after HLDA Rising Edge	115 110 116	200 160 116	ns ns ns ns ns ns	(Note 3) (Note 5) (Note 5)
UPI Timing	tuas tuah tRPW toE toD tDRDY twDw tUDS tuDH (HPC467064) tuDH (HPC167064) ta	Address Setup Time to Falling Edge of URD Address Hold Time from Rising Edge of URD URD Pulse Width URD Falling Edge to Output Data Valid Rising Edge of URD to Output Data Invalid RDRDY Delay from Rising Edge of URD UWR Pulse Width Input Data Valid before Rising Edge of UWR Input Data Hold after Rising Edge of UWR WRRDY Delay from Rising Edge of UWR	10 100 0 5 40 10 20 25*	60 45 70 70	ns ns ns ns ns ns ns ns ns ns ns	(Note 6)

*See NORMAL RUNNING MODE.

**This maximum frequency is attainable provided that this external baud clock has a duty cycle such that the high period includes two (2) falling edges of the CK2 clock.

Note: $C_L = 40 \text{ pF}.$

Note 1: These AC Characteristics are guaranteed with external clock drive on CKI having 50% duty cycle and with less than 15 pF load on CKO with rise and fall times (t_{CKIR} and t_{CKIL}) on CKI input less than 2.5 ns.

Note 2: Do not design with this parameter unless CKI is driven with an active signal. When using a passive crystal circuit, its stability is not guaranteed if either CKI or CKO is connected to any external logic other than the passive components of the crystal circuit.

Note 3: t_{HAE} is specid for case with HLD falling edge occurring at the latest time can be accepted during the present CPU cycle being executed. If HLD falling edge occurs later, t_{HAE} may be as long as ($3t_C + 4$ WS + $72t_C + 100$) depending on the following CPU instruction cycles, its wait states and ready input.

Note 4: WS = t_{WAIT} × (number of pre-programmed wait states). Minimum and maximum values are calculated at maximum operating frequency, t_c = 20.00 MHz, with one wait state programmed.

Note 5: Due to emulation restrictions—actual limits will be better.

Note 6: Due to tester limitations-actual limits will be better.

20 MHz

AC Electrical Characteristics (Continued) (See Notes 1 and 4 and *Figures 1* thru 5.) $V_{CC} = 5V \pm 5\%^*$, $T_A = -55^{\circ}C$ to $+125^{\circ}C$ for HPC167064 and $V_{CC} = 5V \pm 10\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ for HPC467064 (Continued)

	Symbol and Formula	Parameter	Min	Max	Units	Notes
cles	^t DC1ALER ^t DC1ALEF	Delay from CKI Rising Edge to ALE Rising Edge Delay from CKI Rising Edge to ALE Falling Edge	0 0	35 35	ns ns	(Notes 1, 2) (Notes 1, 2)
Address Cycles	$t_{DC2ALER} = \frac{1}{4}t_{C} + 20$ $t_{DC2ALEF} = \frac{1}{4}t_{C} + 20$	Delay from CK2 Rising Edge to ALE Rising Edge Delay from CK2 Falling Edge to ALE Falling Edge		45 45	ns ns	
Addre	$t_{LL} = \frac{1}{2} t_C - 9$ $t_{ST} = \frac{1}{4} t_C - 7$	ALE Pulse Width Setup of Address Valid before ALE Falling Edge Hold of Address Valid after ALE Falling Edge	41		ns ns	
	$t_{VP} = \frac{1}{4} t_C - 5$ $t_{ARR} = \frac{1}{4} t_C - 5$	20 20		ns ns		
es	$t_{ACC} = t_{C} + WS - 55$	Data Input Valid after Address Output Valid		145	ns	
Read Cycles	$t_{RD} = \frac{1}{2} t_C + WS - 65$	Data Input Valid after RD Falling Edge		85	ns	
ead	$t_{RW} = \frac{1}{2} t_{C} + WS - 10$	RD Pulse Width	140		ns	
ž	t _{DR} = ¾ t _C − 15	Hold of Data Input Valid after $\overline{\text{RD}}$ Rising Edge	0	60	ns	
	$t_{RDA} = t_C - 15$	Bus Enable after \overline{RD} Rising Edge	85		ns	
les	$t_{ARW} = \frac{1}{2} t_{C} - 5$	$_{W} = \frac{1}{2} t_{C} - 5$ ALE Falling Edge to \overline{WR} Falling Edge			ns	
Write Cycles	$t_{WW} = \frac{3}{4} t_{C} + WS - 15$	$_{\rm W} = \frac{3}{4} t_{\rm C} + W {\rm S} - 15$ $\overline{\rm WR}$ Pulse Width			ns	
rite	$t_V = \frac{1}{2} t_C + WS - 5$	Data Output Valid before WR Rising Edge	145		ns	
3	$t_{HW} = \frac{1}{4} t_{C} - 5$	Hold of Data Valid after WR Rising Edge	20		ns	
주는	$t_{DAR} = \frac{1}{4} t_{C} + WS - 50$	Falling Edge of ALE to Falling Edge of $\overline{\text{RDY}}$		75	ns	
Ready Input	$t_{RWR} = t_C$	RDY Pulse Width	100		ns	

4

	Symbol and Formula	Parameter	Min	Max	Units	Notes
Clocks	f_{C} $t_{C1} = 1/f_{C}$ t_{CKIH} t_{CKIL} $t_{C} = 2/f_{C}$	CKI Operating Frequency CKI Clock Period CKI High Time CKI Low Time CPU Timing Cycle	2 33 22.5 22.5 66	30 500	MHz ns ns ns ns	
Cloc	twait = tC tDC1C2R tDC1C2F	CPU Wait State Period Delay of CK2 Rising Edge after CKI Falling Edge Delay of CK2 Falling Edge after CKI Falling Edge	66 0 0	55 55	ns ns ns	(Note 2) (Note 2)
	$f_U = f_C/8$ f_{MW}	External UART Clock Input Frequency External MICROWIRE/PLUS Clock Input Frequency		3.75** 1.875	MHz MHz	
Timers		External Timer Input Frequency Pulse Width for Timer Inputs	66	1.364	MHz ns	
Plus	tuws	MICROWIRE Setup Time—Master MICROWIRE Setup Time—Slave	100 20		ns	
Microwire/Plus	tuwн	MICROWIRE Hold Time—Master MICROWIRE Hold Time—Slave	20 50		ns	
Micr	tuwv	MICROWIRE Output Valid Time—Master MICROWIRE Output Valid Time—Slave		50 150	ns	
External Hold	$\begin{array}{l} t_{SALE} = \frac{3}{4} t_{C} + 40 \\ t_{HWP} = t_{C} + 10 \\ t_{HAE} = t_{C} + 85 \\ t_{HAD} = \frac{3}{4} t_{C} + 85 \\ t_{BF} = \frac{1}{2} t_{C} + 66 \\ t_{BE} = \frac{1}{2} t_{C} + 66 \end{array}$	HLD Falling Edge before ALE Rising Edge HLD Pulse Width HLDA Falling Edge after HLD Falling Edge HLDA Falling Edge after HLD Rising Edge Bus Float after HLDA Falling Edge Bus Enable after HLDA Rising Edge	90 76 99	151 135 99	ns ns ns ns ns ns	(Note 3) (Note 5) (Note 5)
UPI Timing	tuas tuah trpw toe tod tod tod tody twdw tuds tudh ta	Address Setup Time to Falling Edge of URD Address Hold Time from Rising Edge of URD URD Pulse Width URD Falling Edge to Output Data Valid Rising Edge of URD to Output Data Invalid RDRDY Delay from Rising Edge of URD UWR Pulse Width Input Data Valid before Rising Edge of UWR Input Data Hold after Rising Edge of UWR WRRDY Delay from Rising Edge of UWR	10 10 100 0 5 40 10 20	60 45 70 70	ns ns ns ns ns ns ns ns ns ns	(Note 6)
Address Cycles		Delay from CKI Rising Edge to ALE Rising Edge Delay from CKI Rising Edge to ALE Falling Edge Delay from CK2 Rising Edge to ALE Rising Edge Delay from CK2 Falling Edge to ALE Falling Edge ALE Pulse Width Setup of Address Valid before ALE Falling Edge Hold of Address Valid after ALE Falling Edge	0 0 24 9 11	35 35 37 37	ns ns ns ns ns ns ns	(Notes 1, 2 (Notes 1, 2

	Symbol and Formula	Parameter	Min	Max	Units	Notes
	$t_{ARR} = \frac{1}{4} t_{C} - 5$	ALE Falling Edge to RD Falling Edge	12		ns	
les	$t_{ACC} = t_C + WS - 32$	Data Input Valid after Address Output Valid		100	ns	
Read Cycles	$t_{RD} = \frac{1}{2} t_{C} + WS - 39$	Data Input Valid after RD Falling Edge		60	ns	
ead	$t_{RW} = \frac{1}{2} t_{C} + WS - 14$	RD Pulse Width	85		ns	
č	$t_{DR} = \frac{3}{4} t_{C} - 15$	Hold of Data Input Valid after $\overline{\text{RD}}$ Rising Edge	0	35	ns	
	$t_{RDA} = t_C - 15$	Bus Enable after RD Rising Edge	51		ns	
Write Cycles	$t_{ARW} = \frac{1}{2} t_{C} - 5$				ns	
	$t_{WW} = \frac{3}{4} t_{C} + WS - 15$	WR Pulse Width	101		ns	
ite	$t_V = \frac{1}{2} t_C + WS - 5$	Data Output Valid before WR Rising Edge	94		ns	
ž	$t_{HW} = \frac{1}{4} t_{C} - 10$	Hold of Data Valid after WR Rising Edge	7		ns	
≥ ±	$t_{DAR} = \frac{1}{4} t_{C} + WS - 50$	Falling Edge of ALE to Falling Edge of $\overline{\text{RDY}}$		33	ns	
Ready Input	$t_{RWR} = t_C$	RDY Pulse Width	66		ns	
mes (t _{CKI} lote 2: Do r CKO is lote 3: t _{H/} ccurs late lote 4: W3 <i>v</i> ith one w lote 5: Du	hese AC Characteristics are guaranteed $_{\rm R}$ and $_{\rm CKIL}$) on CKI input less than 2.5 on to design with this parameter unless C connected to any external logic other that $_{\rm RE}$ is spec'd for case with HLD falling edu or, t _{HAE} may be as long as (3t _C + 4 W3)	CKI is driven with an active signal. When using a passive crystal an the passive components of the crystal circuit. ge occurring at the latest time can be accepted during the prese $S + 72t_C + 100$) depending on the following CPU instruction of ad wait states). Minimum and maximum values are calculated at s will be better.	circuit, its st nt CPU cycle cycles, its w	ability is not e being exec ait states ar	guaranteed if uted. If HLD f id ready input	either CK alling edge
CKII	nput Signal Charac	teristics				

TL/DD/11046-2

Duty Cycle

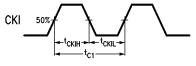
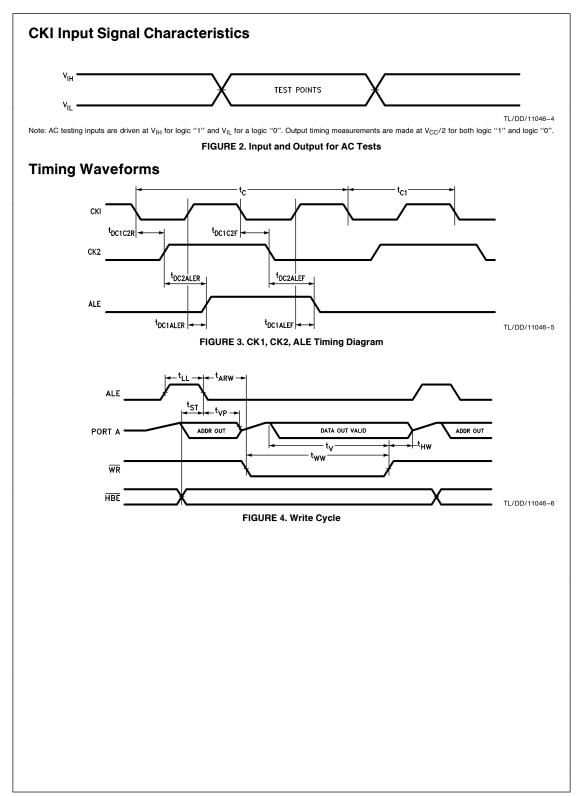
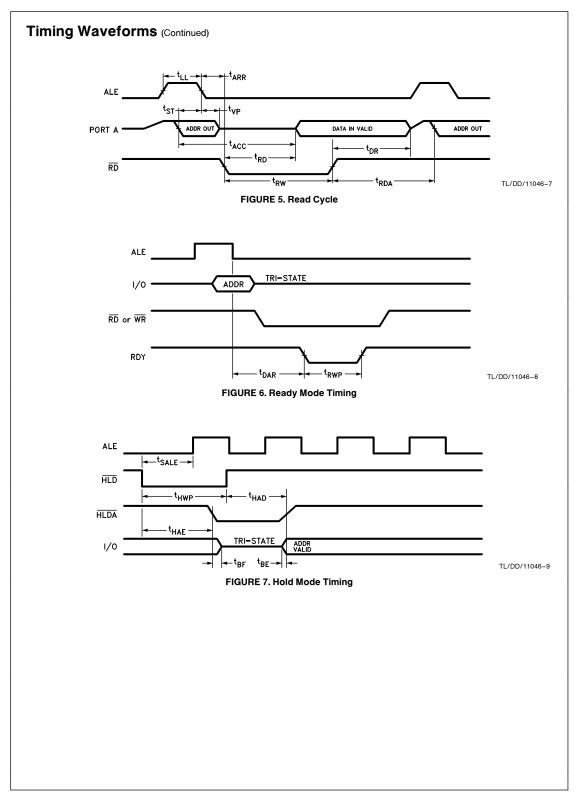
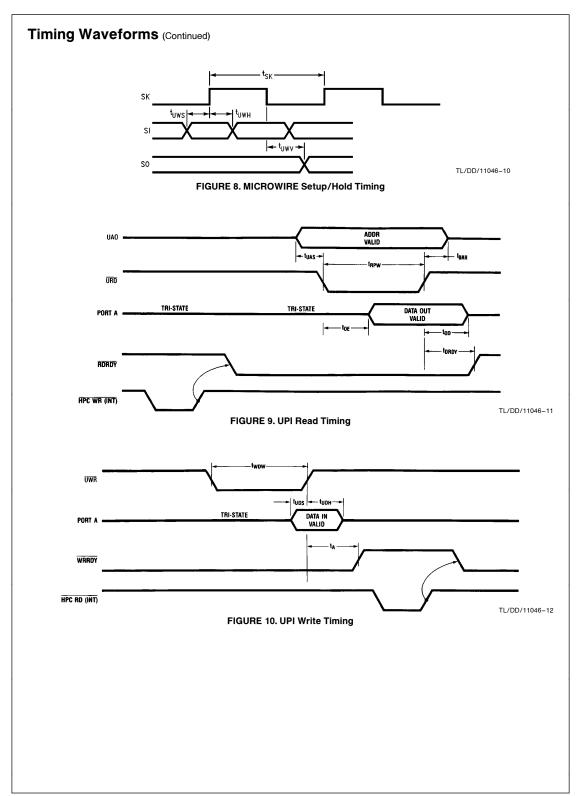





FIGURE 1. CKI Input Signal

TL/DD/11046-3

Functional Modes of Operation

There are two primary functional modes of operation for the HPC167064.

- EPROM Mode
- Normal Running Mode

EPROM MODE

In the EPROM mode, the HPC167064 is configured to "approximately emulate" a standard NMC27C256 EPROM. Some dissimilarities do exist. The most significant one is that HPC167064 contains only 16 kbytes of programmable memory, rather than the 32 kbytes in 27C256. An HPC167064 in the EPROM mode can be programmed with a Data I/O machine.

Given below is the list of functions that can be performed by the user in the EPROM mode.

Programming

CAUTION: Exceeding 14V on pin 1 (V_PP) will damage the HPC167064.

Initially, and after each erasure, all bits of the HPC EPROM are in the "1" state. Data is introduced by selectively programming "0s" into the desired bit locations. Although only "0s" will be programmed, both "1s" and "0s" can be presented in the data word. The only way to change a "0" to a "1" is by ultraviolet light erasure.

Program/verify EPROM registers

To read data (verify) during the programming process, V_{PP} must be at 13V. When reading data after the programming process, V_{PP} can be either 13V or at $V_{CC}.$

• Program/verify ECON registers

There are two configuration registers ECON6 and ECON7 to emulate different family members and also to enable/disable different features in the chip. These registers are not mapped in the EPROM user space. These bytes must be programmed through a pointer register ECONA.

To prevent unintentional programming, the ECON6, 7 registers must be programmed with the assistance of this pointer register. ECONA, and externally presented address, both identify the same ECON register may be programmed.

NORMAL RUNNING MODE

In this mode, the HPC167064 executes user software in the normal manner. By default, its arcitecture imitates that of the HPC16064. It may be configured to emulate the HPC16083. The addressable memory map will be exactly as for the HPC16083. The WATCHDOG function monitors addresses accordingly. Thus, the HPC167064 can be used as a stand-alone emulator for both HPC16064 and HPC16083. Within this mode, the on-chip EPROM cell acts as read only memory. Each memory fetch is 16-bits wide. The HPC167064 operates to 20 MHz with 1 wait state for the on-chip memory.

The HPC167064 emulates the HPC16064 and HPC16083, except as described here.

- The value of EXM is latched on the rising edge of RESET. Thus, the user may not switch from ROMed to ROMless operation or vice-versa, without another RESET pulse.
- The security logic can be used to control access to the on-chip EPROM. This feature is unique to the HPC167064. There is no corresponding mode of operation on the HPC16064 or the HPC16083.
- Specific inputs are allowed to be driven at high voltage (13V) to configure the device for programming. These high voltage inputs are unique to the HPC167064. The same inputs cannot be driven to high voltage on the HPC16064 and HPC16083 without damage to the part.
- The Port D input structure on this device is slightly different from the masked ROM HPC16083 and HPC16064. V_{IH2} min and V_{IL2} max are the same as for the masked ROM HPC16083 and HPC16064. There is a V_{IH2} max requirement for this device equal to V_{CC} + 0.05V. There is also a V_{IL2} min requirement for this device equal to GND-0.05V. The V_{IH2} max and V_{IL2} min requirement for the masked ROM devices is the Absolute Maximum Ratings of V_{CC} + 0.5V and GND-0.5V respectively.
- The D.C. Electrical Characteristics and A.C. Electrical Characteristics for the HPC167064, where $T_A=-55^\circ\text{C}$ to $\pm125^\circ\text{C}$, are guaranteed over a reduced operating voltage range of $V_{CC}\pm5\%$. This is different from the masked ROM devices that it simulates which is $V_{CC}\pm10\%$. These characteristics for the HPC467064, where $T_A=-0^\circ\text{C}$ to $\pm70^\circ\text{C}$, are guaranteed over the masked ROM operating voltage range which is $V_{CC}\pm10\%$.
- In addition to the reduced operating voltage range for the HPC167064, the A.C. timing parameter t_{UDH} is required to be a mimimum value of 25 ns. The masked ROM devices require a mimimum t_{UDH} 0f 20 ns. This A.C. timing parameter for the HPC467064 is required to be the same as the masked ROM devices.

HPC167064 EPROM SECURITY

The HPC167064 includes security logic to provide READ and WRITE protection of the on-chip EPROM. These defined privileges are intended to deter theft, alteration, or unintentional destruction of user code. Two bits are used to define four levels of security on the HPC167064 to control access to on-chip EPROM.

Security Level 3

This is the default configuration of an erased HPC167064. READ and WRITE accesses to the on-chip EPROM or ECON registers may be accomplished without constraint in EPROM mode. READ accesses to the on-chip EPROM may be accomplished without constraint in NORMAL RUNNING mode.

Functional Modes of Operation (Continued)

Security Level 2

This security level prevents programming of the on-chip EPROM or the ECON registers thereby providing WRITE protection. Read accesses to the on-chip EPROM or ECON registers may be accomplished without constraint in EPROM. Read accesses to the on-chip EPROM may be accomplished without constraint in NORMAL RUNNING mode.

Security Level 1

This security level prevents programming of the on-chip EPROM or ECON registers-thereby providing registers write protection. Read accesses to the on-chip ECON-registers may be accomplished without constraint in EPROM mode. Read accesses to the on-chip EPROM will produce ENCRYPTED data in EPROM. READ accesses to the onchip EPROM, during NORMAL RUNNING mode, are subject to Runtime Memory Protection. Under Runtime Memory Protection, only instruction opcodes stored within the on-chip EPROM are allowed to access the EPROM as operand. If any other instruction opcode attempts to use the contents of EPROM as an operand, it will receive the hex value "FF". The Runtime Memory Protection feature is designed to prevent hostile software, running from external memory or on-chip RAM, from reading secured EPROM data. Transfers of control into, or out of the on-chip EPROM (such as jump or branch) are not affected by Runtime Memory Protection. Interrupt vector fetches from EPROM proceed normally, and are not affected by Runtime Memory Protection

Security Level 0

This security level prevents programming of the on-chip EPROM or ECON registers, thereby providing write protection. Read accesses to the on-chip ECON registers may be accomplished without constraint in EPROM mode. READ accesses to the on-chip EPROM are NOT ALLOWED in EPROM mode. Such accesses will return data value "FF" hex. Runtime Memory Protection is enforced as in security level 1.

These four levels of security help ensure that the user EPROM code is not tampered with in a test fixture and that code executing from RAM or external memory does not dump the user algorithm.

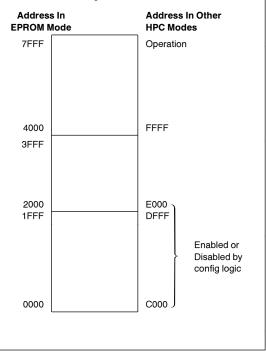
Erasure Characteristics

The erasure characteristics of the HPC167064 are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000Å-4000Å range.

After programming, opaque labels should be placed over the HPC167064's window to prevent unintentional erasure. Covering the window will also prevent temporary functional failure due to the generation of photo currents.

The recommended erasure procedure for the HPC167064 is exposure to short wave ultraviolet light which has a wavelength of 2537 Angstroms (Å). The integrated dose (i.e., UV intensity \times exposure time) for erasure should be a minimum of 30W-sec/cm².

The HPC167064 should be placed within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure. The erasure time table shows the minimum HPC167064 erasure time for various light intensities. An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at one inch. The erasure time increases as the square of the distance. (If distance is doubled the erasure time increases by a factor of 4.) Lamps lose intensity as they age. When a lamp is changed, the distance has changed or the lamp has aged, the system should be checked to make certain full erasure is occurring.

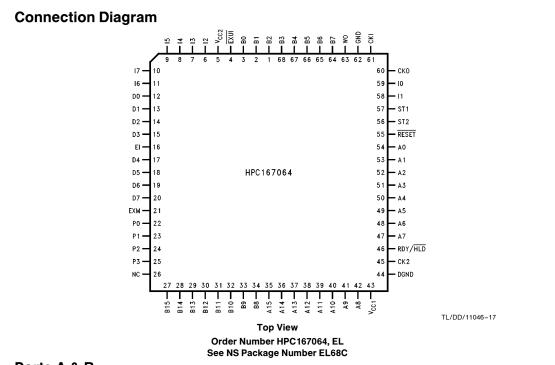

Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and even system designs have been erroneously suspected when incomplete erasure was the problem.

Light Intensity (Micro-Watts/cm ²)	Erasure Time (Minutes)
15,000	36
10,000	50

Memory Map of the HPC167064

The HPC167064 has 256 bytes of on-chip user RAM and chip registers located at address 0000-01FF that is always enabled, and 256 bytes of on-chip RAM located at 0200-02FF that can be enabled or disabled. It has 8 kbytes of on-chip EPROM located at address 0E000-0FFFF that is always enabled and 8 kbytes of EPROM located at address 0C000-0DFFF that can be enabled or disabled.

The ECON6 contains two bits ROM0 and RAM0. When these bits are "1" (erased default), full 16 kbytes of ROM and 512 bytes of RAM are enabled. Programming a "0" to these bits disables the lower 8k for the EPROM and upper 256 bytes for the RAM. The ECON registers are only accessible to the user during EPROM mode.

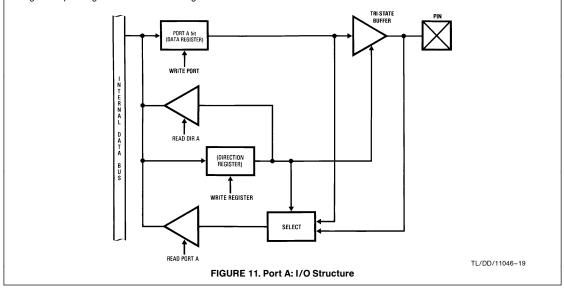

Pin Descriptions

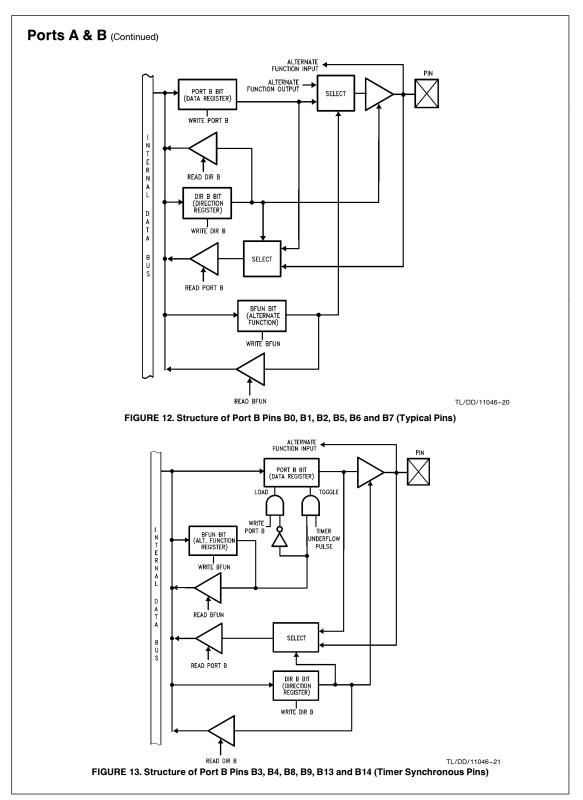
The HPC167064 is available only in 68-pin LDCC package.

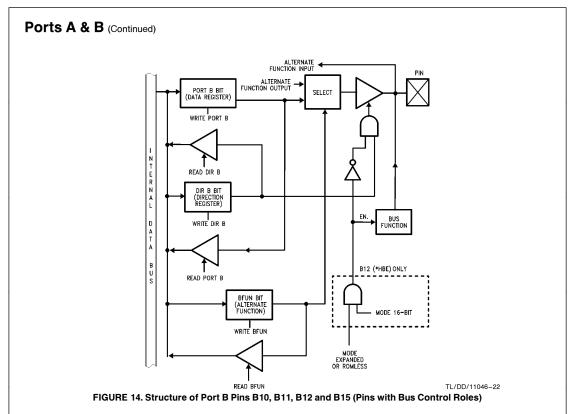
I/O PORTS

POWER SUPPLY PINS

пен	PC10700	4 is available only in 68-pin LDCC package.	POWERS	OUPPLY PINS
I/O P	ORTS		V_{CC1} and	
Port A	is a 16-b	it bidirectional I/O port with a data direction	V _{CC2}	Positive Power Supply
		ble each separate pin to be individually de-	GND	Ground for On-Chip Logic
		t or output. When accessing external memo-	DGND	Ground for Output Buffers
Port B	is a 16-b	ed as the multiplexed address/data bus. it port with 12 bits of bidirectional I/O similar Port A. Pins B10, B11, B12 and B15 are gen-	DGND	are two electrically connected V_{CC} pins on the chip, GND and ϱ are electrically isolated. Both V_{CC} pins and both ground pins be used.
		Itputs only in this mode. Port B may also be	CLOCK P	INS
		16-bit function register BFUN to individually	CKI	The Chip System Clock Input
allow	each pin t	to have an alternate function.	СКО	The Chip System Clock Output (inversion of CKI)
B0: B1:	TDX	UART Data Output	Pins CKI a crystal.	and CKO are usually connected across an external
B2:	CKX	UART Clock (Input or Output)	CK2	Clock Output (CKI divided by 2)
B3:	T2IO	Timer2 I/O Pin		,
B4:	T3IO	Timer3 I/O Pin		
B5:	SO	MICROWIRE/PLUS Output	WO	This is an active low open drain output that sig-
	SK	MICROWIRE/PLUS Clock (Input or Output)		nals an illegal situation has been detected by the WATCHDOG logic.
B7:	HLDA	Hold Acknowledge Output	ST1	Bus Cycle Status Output: indicates first opcode
	TS0	Timer Synchronous Output	311	fetch.
	TS1	Timer Synchronous Output	ST2	Bus Cycle Status Output: indicates machine
B10:		Address 0 Input for UPI Mode	012	states (skip, interrupt and first instruction cycle).
B12:		Write Ready Output for UPI Mode	RESET	is an active low input that forces the chip to re- start and sets the ports in a TRI-STATE mode.
B13:		Timer Synchronous Output		has two uses, selected by a software bit. It's ei-
B14:		Timer Synchronous Output		ther an input to extend the bus cycle for slower
B15:	RDRDY	Read Ready Output for UPI Mode		memories, or a HOLD request input to put the
	accessin as follows	g external memory, four bits of port B are ::		bus in a high impedance state for DMA purposes.
B10:	ALE	Address Latch Enable Output	NC	(no connection) do not connect anything to this
B11:	WR	Write Output		pin.
B12:	HBE	High Byte Enable Output/Input	EXM	Has two uses. External memory enable (active
		(sampled at reset)		high) which disables internal EPROM and maps it to external memory, and is V _{PP} during EPROM
B15:	RD	Read Output		mode.
		bit input port that can be read as general	EI	External interrupt with vector address
purpo: I0:	se inputs	and is also used for the following functions:		FFF1:FFF0. (Rising/falling edge or high/low lev- el sensitive). Alternately can be configured as
11:	NMI	Nonmaskable Interrupt Input		4th input capture.
12:	INT2	Maskable Interrupt/Input Capture/URD	EXUI	External interrupt which is internally OR'ed with
13:	INT3	Maskable Interrupt/Input Capture/UWR		the UART interrupt with vector address
14:	INT4	Maskable Interrupt/Input Capture		FFF3:FFF2 (Active Low).
15:	SI	MICROWIRE/PLUS Data Input		
16:	RDX	UART Data Input		
17:				
) is an 8- se digital i	bit input port that can be used as general inputs.		
Port F	is a 4-b	it output port that can be used as general		
		or selected to be controlled by timers 4		
		der to generate frequency, duty cycle and		
pulse	width mo	dulated outputs.		




Ports A & B


The highly flexible A and B ports are similarly structured. The Port A (see *Figure 11*), consists of a data register and a direction register. Port B (see *Figures 12* thru *Figure 14*) has an alternate function register in addition to the data and direction registers. All the control registers are read/write registers.

The associated direction registers allow the port pins to be individually programmed as inputs or outputs. Port pins selected as inputs are placed in a TRI-STATE mode by resetting corresponding bits in the direction register. A write operation to a port pin configured as an input causes the value to be written into the data register, a read operation returns the value of the pin. Writing to port pins configured as outputs causes the pins to have the same value, reading the pins returns the value of the data register.

Primary and secondary functions are multiplexed onto Port B through the alternate function register (BFUN). The secondary functions are enabled by setting the corresponding bits in the BFUN register.

Operating Modes

To offer the user a variety of I/O and expanded memory options, the HPC167064 has four operating modes. The various modes of operation are determined by the state of both the EXM pin and the EA bit in the PSW register. The state of the EXM pin determines whether on-chip EPROM will be accessed or external memory will be accessed within the address range of the on-chip EPROM. The on-chip EPROM range of the HPC167064 is C000 to FFFF (16 kbytes).

A logic "0" state on the EXM pin will cause the HPC device to address on-chip EPROM when the Program Counter (PC) contains addresses within the on-chip EPROM address range. A logic "1" state on the EXM pin will cause the HPC device to address memory that is external to the HPC when the PC contains on-chip EPROM addresses. The function of the EA bit is to determine the legal addressing range of the HPC device. A logic "0" state in the EA bit of the PSW register does two things—addresses are limited to the onchip EPROM range and on-chip RAM and Register range, and the "illegal address detection" feature of the WATCH- DOG logic is engaged. A logic "1" in the EA bit enables accesses to be made anywhere within the 64 kbytes address range and the "illegal address detection" feature of the WATCHDOG logic is disabled.

All HPC devices can be used with external memory. External memory may be any combination of RAM and EPROM. Both 8-bit and 16-bit external data bus modes are available. Upon entering an operating mode in which external memory is used, Port A becomes the Address/Data bus. Four pins of Port B become the control lines ALE, RD, WR and HBE. The High Byte Enable pin (HBE) is used in 16-bit mode to select high order memory bytes. The RD and WR signals are only generated if the selected address is off-chip. The 8-bit mode is selected by pulling HBE high at reset. If HBE is left floating or connected to a memory device chip select at reset, the 16-bit mode is entered. The following sections describe the operating modes of the HPC167064.

Note: The HPC devices use 16-bit words for stack memory. Therefore, when using the 8-bit mode, User's Stack must be in internal RAM.

HPC167064 Operating Modes

SINGLE CHIP NORMAL MODE

In this mode, the HPC167064 functions as a self-contained microcomputer (see *Figure 15*) with all memory (RAM and EPROM) on-chip. It can address internal memory only, consisting of 16 kbytes of EPROM (C000 to FFFF) and 512 bytes of on-chip RAM and Registers (0000 to 02FF). The "illegal address detection" feature of the WATCHDOG is enabled in the Single-Chip Normal mode and a WATCH-DOG Output (WO) will occur if an attempt is made to access addresses that are outside of the on-chip EPROM and RAM range of the device. Ports A and B are used for I/O functions and not for addressing external memory. The EXM pin and the EA bit of the PSW register must both be logic "0" to enter the Single-Chip Normal mode.

EXPANDED NORMAL MODE

The Expanded Normal mode of operation enables the HPC167064 to address external memory in addition to the on-chip ROM and RAM (see Table I). WATCHDOG illegal address detection is disabled and memory accesses may be made anywhere in the 64 kbyte address range without triggering an illegal address condition. The Expanded Normal mode is entered with the EXM pin pulled low (logic "0") and setting the EA bit in the PSW register to "1".

Operating Mode	EXM Pin	EA Bit	Memory Configuration
Single-Chip Normal	0	0	C000-FFFF On-Chip
Expanded Normal	0	1	C000-FFFF On-Chip 0300-BFFF Off-Chip
Single-Chip ROMless	1	0	C000-FFFF Off-Chip
Expanded ROMless	1	1	0300-FFFF Off-Chip

SINGLE-CHIP ROMIess MODE

In this mode, the on-chip EPROM of the HPC167064 is not used. The address space corresponding to the on-chip EPROM is mapped into external memory so 16k of external memory may be used with the HPC167064 (see Table I). The WATCHDOG circuitry detects illegal addresses (addresses not within the on-chip EPROM and RAM range). The Single-Chip ROMIess mode is entered when the EXM pin is pulled high (logic "1") and the EA bit is logic "0".

EXPANDED ROM MODE

This mode of operation is similar to Single-Chip ROMless mode in that no on-chip ROM is used, however, a full 64 kbytes of external memory may be used. The "illegal address detection" feature of WATCHDOG is disabled. The EXM pin must be pulled high (logic "1") and the EA bit in the PSW register set to "1" to enter this mode.

Wait States

The internal EPROM can be accessed at the maximum operating frequency with one wait state. With 0 wait states, internal ROM accesses are limited to $\frac{2}{3}$ f_C max. The HPC167064 provides four software selectable Wait States that allow access to slower memories. The Wait States are selected by the state of two bits in the PSW register. Additionally, the RDY input may be used to extend the instruction cycle, allowing the user to interface with slow memories and peripherals.

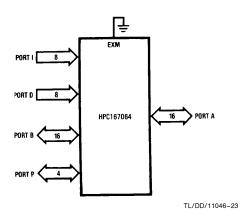


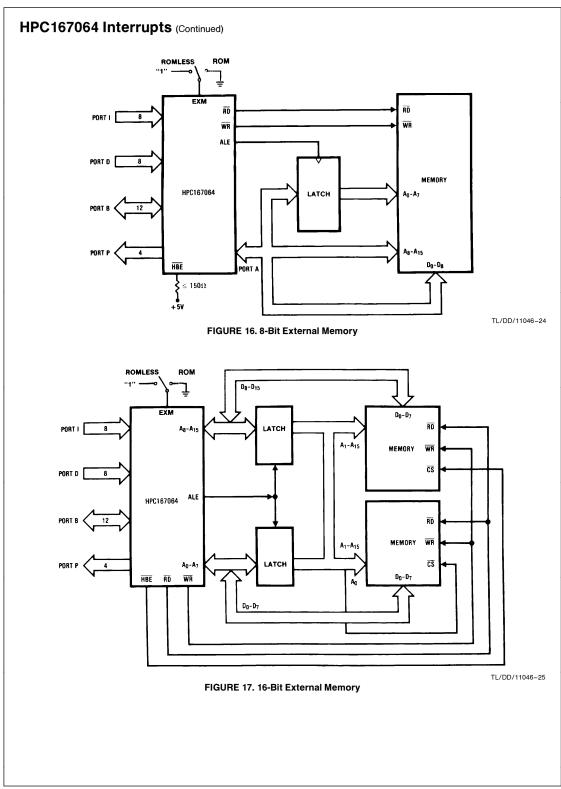
FIGURE 15. Single-Chip Mode

Power Save Modes

Two power saving modes are available on the HPC167064: HALT and IDLE. In the HALT mode, all processor activities are stopped. In the IDLE mode, the on-board oscillator and timer T0 are active but all other processor activities are stopped. In either mode, all on-board RAM, registers and I/O are unaffected.

HALT MODE

The HPC167064 is placed in the HALT mode under software control by setting bits in the PSW. All processor activities, including the clock and timers, are stopped. In the HALT mode, power requirements for the HPC167064 are minimal and the applied voltage (V_{CC}) may be decreased without altering the state of the machine. There are two ways of exiting the HALT mode: via the RESET or the NMI. The RESET input reinitializes the processor. Use of the NMI input will generate a vectored interrupt and resume operation from that point with no initialization. The HALT mode can be enabled or disabled by means of a control register HALT enable. To prevent accidental use of the HALT mode the HALT mode the HALT enable register can be modified only once.


IDLE MODE

The HPC167064 is placed in the IDLE mode through the PSW. In this mode, all processor activity, except the onboard oscillator and Timer T0, is stopped. As with the HALT mode, the processor is returned to full operation by the RESET or NMI inputs, but without waiting for oscillator stabilization. A timer T0 overflow will also cause the HPC167064 to resume normal operation.

Note: If an NMI interrupt is received during the instruction which puts the device in Halt or Idle Mode, the device will enter that power saving mode. The interrupt will be held pending until the device exits that power saving mode. When exiting Idle mode via the To overflow, the NMI interrupt will be serviced when the device exits Idle. If another NMI interrupt is received during either Halt of Idle the processor will exit the power saving mode and vector to the interrupt address.

HPC167064 Interrupts

Complex interrupt handling is easily accomplished by the HPC167064's vectored interrupt scheme. There are eight possible interrupt sources as shown in Table II.

	TABLE II. Interrupts	
Vector Address	Interrupt Source	Arbitration Ranking
FFFF:FFFE	RESET	0
FFFD:FFFC	Nonmaskable external on rising edge of 11 pin	1
FFFB:FFFA	External interrupt on I2 pin	2
FFF9:FFF8	External interrupt on I3 pin	3
FFF7:FFF6	External interrupt on I4 pin	4
FFF5:FFF4	Overflow on internal timers	5
FFF3:FFF2	Internal on the UART transmit/receive complete or external on \overline{EXUI}	6
FFF1:FFF0	External interrupt on El pin	7

Interrupt Arbitration

The HPC167064 contains arbitration logic to determine which interrupt will be serviced first if two or more interrupts occur simultaneously. The arbitration ranking is given in Table II. The interrupt on $\overline{\text{RESET}}$ has the highest rank and is serviced first.

Interrupt Processing

Interrupts are serviced after the current instruction is completed except for the RESET, which is serviced immediately. RESET and EXUI are level-LOW-sensitive interrupts and EI is programmable for edge-(RISING or FALLING) or level-(HIGH or LOW) sensitivity. All other interrupts are edge-sensitive. NMI is positive-edge sensitive. The external interrupts on 12, 13 and 14 can be software selected to be rising or falling edge. External interrupt (EXUI) is shared with UART interrupt. This interrupt is level-low sensitive. To select this interrupt disable the ERI and ETI UART interrupt bits in the ENUI register. To select the UART interrupt leave this pin floating or tie it high.

Interrupt Control Registers

The HPC167064 allows the various interrupt sources and conditions to be programmed. This is done through the various control registers. A brief description of the different control registers is given below.

INTERRUPT ENABLE REGISTER (ENIR)

RESET and the External Interrupt on I1 are non-maskable interrupts. The other interrupts can be individually enabled or disabled. Additionally, a Global Interrupt Enable Bit in the ENIR Register allows the Maskable interrupts to be collectively enabled or disabled. Thus, in order for a particular interrupt to request service, both the individual enable bit and the Global Interrupt bit (GIE) have to be set.

INTERRUPT PENDING REGISTER (IRPD)

The IRPD register contains a bit allocated for each interrupt vector. The occurrence of specified interrupt trigger conditions causes the appropriate bit to be set. There is no indication of the order in which the interrupts have been received. The bits are set independently of the fact that the interrupts may be disabled. IRPD is a Read/Write register. The bits corresponding to the maskable, external interrupts are normally cleared by the HPC167064 after servicing the interrupts.

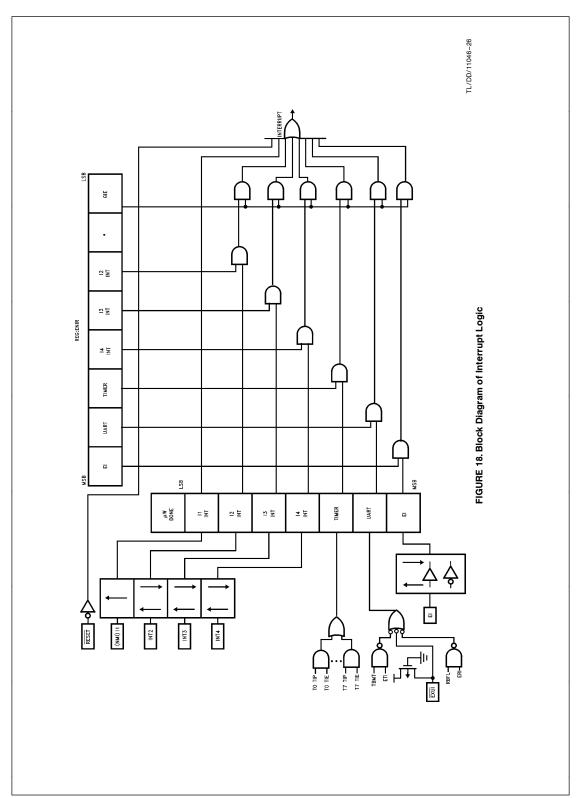
For the interrupts from the on-board peripherals, the user has the responsibility of resetting the interrupt pending flags through software.

The NMI bit is read only and I2, I3, and I4 are designed as to only allow a zero to be written to the pending bit (writing a one has no affect). A LOAD IMMEDIATE instruction is to be the only instruction used to clear a bit or bits in the IRPD register. This allows a mask to be used, thus ensuring that the other pending bits are not affected.

INTERRUPT CONDITION REGISTER (IRCD)

Three bits of the register select the input polarity of the external interrupt on I2, I3, and I4.

Servicing the Interrupts


The Interrupt, once acknowledged, pushes the program counter (PC) onto the stack thus incrementing the stack pointer (SP) twice. The Global Interrupt Enable bit (GIE) is copied into the CGIE bit of the PSW register; it is then reset, thus disabling further interrupts. The program counter is loaded with the contents of the memory at the vector address and the processor resumes operation at this point. At the end of the interrupt service routine, the user does a RETI instruction to pop the stack and re-enable interrupts if the CGIE bit is set, or RET to just pop the stack if the CGIE bit is clear, and then returns to the main program. The GIE bit can be set in the interrupt service routine to nest interrupts if desired. *Figure 18* shows the Interrupt Enable Logic.

RESET

The RESET input initializes the processor and sets Ports A and B in the TRI-STATE condition and Port P in the LOW state. RESET is an active-low Schmitt trigger input. The processor vectors to FFFF:FFE and resumes operation at the address contained at that memory location (which must correspond to an on board location). The Reset vector address must be between C000 and FFFF when emulating the HPC16064 and between E000 and FFFF when emulating the HPC16003.

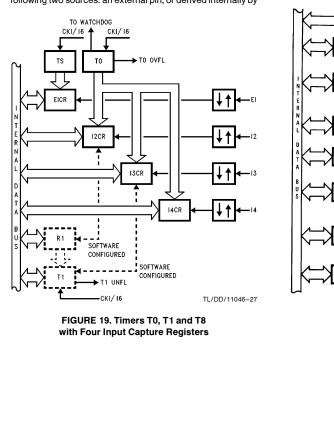
Timer Overview

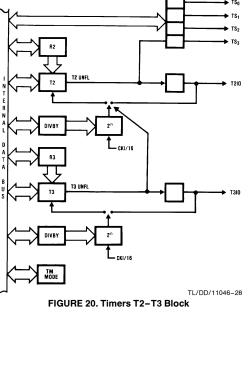
The HPC167064 contains a powerful set of flexible timers enabling the HPC167064 to perform extensive timer functions not usually associated with microcontrollers. The HPC167064 contains nine 16-bit timers. Timer T0 is a free-running timer, counting up at a fixed CKI/16

Timer Overview (Continued)

(Clock Input/16) rate. It is used for WATCHDOG logic, high speed event capture, and to exit from the IDLE mode. Consequently, it cannot be stopped or written to under software control. Timer T0 permits precise measurements by means of the capture registers I2CR, I3CR, and I4CR. A control bit in the register TMMODE configures timer T1 and its associated register R1 as capture registers I3CR and I2CR. The capture registers I2CR, I3CR, and I4CR respectively, record the value of timer T0 when specific events occur on the interrupt pins I2, I3, and I4. The control register IRCD programs the capture registers to trigger on either a rising edge or a falling edge of its respective input. The specified edge *can* also be programmed to generate an interrupt (see *Figure 19*).

The HPC167064 provides an additional 16-bit free running timer, T8, with associated input capture register EICR (External Interrupt Capture Register) and Configuration Register, EICON. EICON is used to select the mode and edge of the EI pin. EICR is a 16-bit capture register which records the value of T8 (which is identical to T0) when a specific event occurs on the EI pin.


The timers T2 and T3 have selectable clock rates. The clock input to these two timers may be selected from the following two sources: an external pin, or derived internally by


dividing the clock input. Timer T2 has additional capability of being clocked by the timer T3 underflow. This allows the user to cascade timers T3 and T2 into a 32-bit timer/counter. The control register DIVBY programs the clock input to timers T2 and T3 (see *Figure 20*).

The timers T1 through T7 in conjunction with their registers form Timer-Register pairs. The registers hold the pulse duration values. All the Timer-Register pairs can be read from or written to. Each timer can be started or stopped under software control. Once enabled, the timers count down, and upon underflow, the contents of its associated register are automatically loaded into the timer.

SYNCHRONOUS OUTPUTS

The flexible timer structure of the HPC167064 simplifies pulse generation and measurement. There are four synchronous timer outputs (TS0 through TS3) that work in conjunction with the timer T2. The synchronous timer outputs can be used either as regular outputs or individually programmed to toggle on timer T2 underflows (see *Figure 20*). Timer/register pairs 4–7 form four identical units which can generate synchronous outputs on Port P (see *Figure 21*).

Timer Overview (Continued)

Maximum output frequency for any timer output can be obtained by setting timer/register pair to zero. This then will produce an output frequency equal to $\frac{1}{2}$ the frequency of the source used for clocking the timer.

Timer Registers

There are four control registers that program the timers. The divide by (DIVBY) register programs the clock input to timers T2 and T3. The timer mode register (TMMODE) contains control bits to start and stop timers T1 through T3. It also contains bits to latch, acknowledge and enable interrupts from timers T0 through T3. The control register PWMODE similarly programs the pulse width timers T4 through T7 by allowing them to be started, stopped, and to latch and enable interrupts on underflows. The PORTP register contains bits to preset the outputs and enable the synchronous timer output functions.

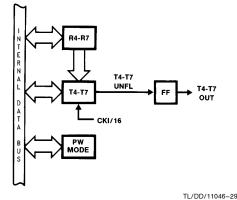


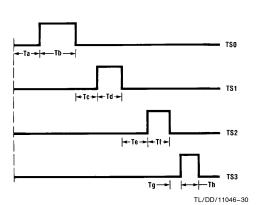
FIGURE 21. Timers T4-T7 Block

Timer Applications

The use of Pulse Width Timers for the generation of various waveforms is easily accomplished by the HPC167064.

Frequencies can be generated by using the timer/register pairs. A square wave is generated when the register value is a constant. The duty cycle can be controlled simply by changing the register value.

Synchronous outputs based on Timer T2 can be generated on the 4 outputs TS0–TS3. Each output can be individually programmed to toggle on T2 underflow. Register R2 contains the time delay between events. *Figure 23* is an example of synchronous pulse train generation.



TL/DD/11046-31

FIGURE 22. Square Wave Frequency Generation

WATCHDOG Logic

The WATCHDOG Logic monitors the operations taking place and signals upon the occurrence of any illegal activity.

FIGURE 23. Synchronous Pulse Generation

The illegal conditions that trigger the WATCHDOG logic are potentially infinite loops and illegal addresses. Should the WATCHDOG register not be written to before Timer TO overflows twice, or more often than once every 4096 counts, an infinite loop condition is assumed to have occurred. An illegal condition also occurs when the processor generates an illegal address when in the Single-Chip modes.* Any illegal condition forces the WATCHDOG Output (WO) pin low. The WO pin is an open drain output and can be connected to the RESET or NMI inputs or to the users external logic.

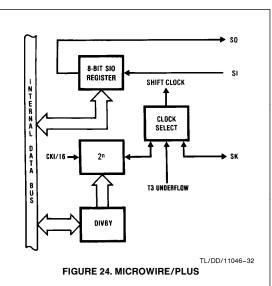
*Note: See Operating Modes for details.

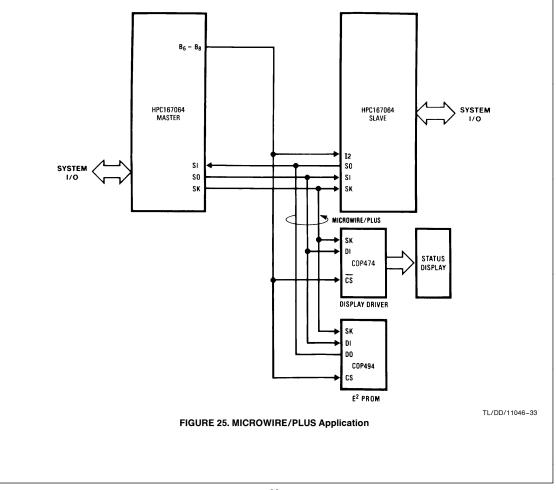
MICROWIRE/PLUS

MICROWIRE/PLUS is used for synchronous serial data communications (see *Figure 24*). MICROWIRE/PLUS has an 8-bit parallel-loaded, serial shift register using SI as the input and SO as the output. SK is the clock for the serial shift register (SIO). The SK clock signal can be provided by an internal or external source. The internal clock rate is programmable by the DIVBY register. A DONE flag indicates when the data shift is completed.

The MICROWIRE/PLUS capability enables it to interface with any of National Semiconductor's MICROWIRE peripherals (i.e., A/D converters, display drivers, EEPROMs).

MICROWIRE/PLUS Operation


The HPC167064 can enter the MICROWIRE/PLUS mode as the master or a slave. A control bit in the IRCD register determines whether the HPC167064 is the master or slave. The shift clock is generated when the HPC167064 is configured as a master. An externally generated shift clock on the SK pin is used when the HPC167064 is configured as a slave. When the HPC167064 is a master, the DIVBY register programs the frequency of the SK clock. The DIVBY register allows the SK clock frequency to be programmed in 15 selectable steps from 64 Hz to 1 MHz with CKI at 16.0 MHz.


The contents of the SIO register may be accessed through any of the memory access instructions. Data waiting to be transmitted in the SIO register is clocked out on the falling edge of the SK clock. Serial data on the SI pin is clocked in on the rising edge of the SK clock.

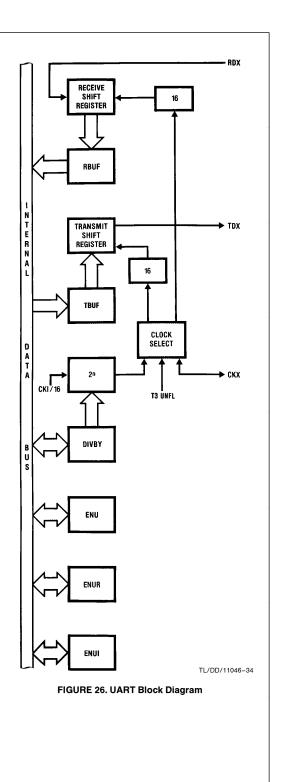
MICROWIRE/PLUS Application

Figure 25 illustrates a MICROWIRE/PLUS arrangement for an automotive application. The microcontroller-based system could be used to interface to an instrument cluster and various parts of the automobile. The diagram shows two HPC167064 microcontrollers interconnected to other MICROWIRE peripherals. HPC167064 1 is set up as the master and initiates all data transfers. HPC167064 2 is set up as a slave answering to the master.

The master microcontroller interfaces the operator with the system and could also manage the instrument cluster in an automotive application. Information is visually presented to the operator by means of a LCD display controlled by the COP472 display driver. The data to be displayed is sent serially to the COP472 over the MICROWIRE/PLUS link. Data such as accumulated mileage could be stored and retrieved from the EEPROM COP494. The slave HPC167064 could be used as a fuel injection processor and generate timing signals required to operate the fuel valves. The master processor could be used to periodically send updated values to the slave via the MICROWIRE/PLUS link. To speed up the response, chip select logic is implemented by connecting an output from the master to the external interrupt input on the slave.

HPC167064 UART

The HPC167064 contains a software programmable UART. The UART (see Figure 26) consists of a transmit shift register, a receiver shift register and five addressable registers, as follows: a transmit buffer register (TBUF), a receiver buffer register (RBUF), a UART control and status register (ENU), a UART receive control and status register (ENUR) and a UART interrupt and clock source register (ENUI). The ENU register contains flags for transmit and receive functions; this register also determines the length of the data frame (8 or 9 bits) and the value of the ninth bit in transmission. The ENUR register flags framing and data overrun errors while the UART is receiving. Other functions of the ENUR register include saving the ninth bit received in the data frame and enabling or disabling the UART's Attention Mode of operation. The determination of an internal or external clock source is done by the ENUI register, as well as selecting the number of stop bits and enabling or disabling transmit and receive interrupts.


The baud rate clock for the Receiver and Transmitter can be selected for either an internal or external source using two bits in the ENUI register. The internal baud rate is programmed by the DIVBY register. The baud rate may be selected from a range of 8 Hz to 128 kHz in binary steps or T3 underflow. By selecting a 9.83 MHz crystal, all standard baud rates from 75 baud to 38.4 kBaud can be generated. The external baud clock source comes from the CKX pin. The Transmitter and Receiver can be run at different rates by selecting one to operate from the internal clock and the other from an external source.

The HPC167064 UART supports two data formats. The first format for data transmission consists of one start bit, eight data bits and one or two stop bits. The second data format for transmission consists of one start bit, nine data bits, and one or two stop bits. Receiving formats differ from transmission only in that the Receiver always requires only one stop bit in a data frame.

UART Wake-Up Mode

The HPC167064 UART features a Wake-Up Mode of operation. This mode of operation enables the HPC167064 to be networked with other processors. Typically in such environments, the messages consist of addresses and actual data. Addresses are specified by having the ninth bit in the data frame set to 1. Data in the message is specified by having the ninth bit in the data frame reset to 0.

The UART monitors the communication stream looking for addresses. When the data word with the ninth bit set is received, the UART signals the HPC167064 with an interrupt. The processor then examines the content of the receiver buffer to decide whether it has been addressed and whether to accept subsequent data.

Universal Peripheral Interface

The Universal Peripheral Interface (UPI) allows the HPC167064 to be used as an intelligent peripheral to another processor. The UPI could thus be used to tightly link two HPC167064's and set up systems with very high data exchange rates. Another area of application could be where a HPC167064 is programmed as an intelligent peripheral to a host system such as the Series 32000® microprocessor. *Figure 27* illustrates how a HPC167064 could be used as an intelligent peripheral for a Series 32000-based application.

The interface consists of a Data Bus (port A), a Read Strobe ($\overline{\text{URD}}$), a Write Strobe ($\overline{\text{UWR}}$), a Read Ready Line ($\overline{\text{RDRDY}}$), a Write Ready Line ($\overline{\text{WRRDY}}$) and one Address Input (UA0). The data bus can be either eight or sixteen bits wide.

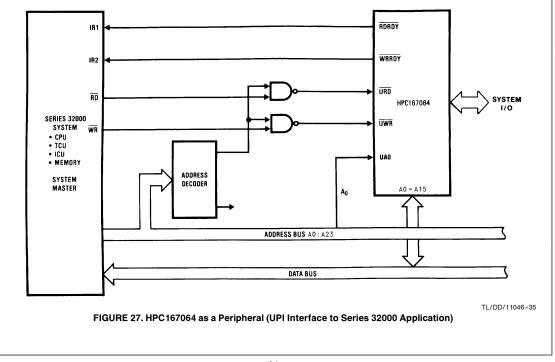
The $\overline{\text{URD}}$ and $\overline{\text{UWR}}$ inputs may be used to interrupt the HPC167064. The $\overline{\text{RDRDY}}$ and $\overline{\text{WRRDY}}$ outputs may be used to interrupt the host processor.

The UPI contains an Input Buffer (IBUF), an Output Buffer (OBUF) and a Control Register (UPIC). In the UPI mode, Port A on the HPC167064 is the data bus. UPI can only be used if the HPC167064 is in the Single-Chip mode.

Shared Memory Support

Shared memory access provides a rapid technique to exchange data. It is effective when data is moved from a peripheral to memory or when data is moved between blocks of memory. A related area where shared memory access proves effective is in multiprocessing applications where two CPUs share a common memory block. The HPC167064 supports shared memory access with two pins. The pins are the RDY/HLD input pin and the HLDA output pin. The user can software select either the Hold or Ready function by the state of a control bit. The HLDA output is multiplexed onto Port B.

The host uses DMA to interface with the HPC167064. The host initiates a data transfer by activating the $\overline{\text{HLD}}$ input of the HPC167064. In response, the HPC167064 places its system bus in a TRI-STATE Mode, freeing it for use by the host. The host waits for the acknowledge signal (HLDA) from the HPC167064 indicating that the sytem bus is free. On receiving the acknowledge, the host can rapidly transfer data into, or out of, the shared memory by using a conventional DMA controller. Upon completion of the message transfer, the host removes the HOLD request and the HPC167064 resumes normal operations.


To insure proper operation, the interface logic shown is recommended as the means for enabling and disabling the user's bus. *Figure 28* illustrates an application of the shared memory interface between the HPC167064 and a Series 32000 system.

Memory

The HPC167064 has been designed to offer flexibility in memory usage. A total address space of 64 kbytes can be addressed with 8 kbytes of EPROM and 512 bytes of RAM available on the chip itself. The EPROM may contain program instructions, constants or data. The EPROM and RAM share the same address space allowing instructions to be executed out of RAM.

Program memory addressing is accomplished by the 16-bit program counter on a byte basis. Memory can be addressed directly by instructions or indirectly through the B, X and SP registers. Memory can be addressed as words or bytes. Words are always addressed on even-byte boundaries. The HPC167064 uses memory-mapped organization to support registers, I/O and on-chip peripheral functions.

The HPC167064 memory address space extends to 64 kbytes and registers and I/O are mapped as shown in Table III and Table IV.

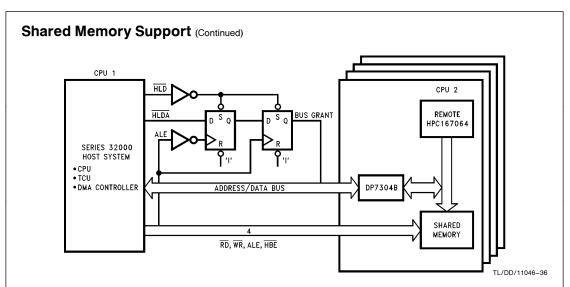


FIGURE 28. Shared Memory Application (HPC167064 Interface to Series 32000 System)

Design Considerations

T6 Timer R5 Register

T5 Timer R4 Register T4 Timer

0149:0148 0147:0146 0145:0144

0143:0142 0141:0140

	TABLE	III. Memory Map of H	IPC167	064 I
FFFF:FFF0 FFEF:FFD0 FFCF:FFCE : : C001:C000	Interrupt Vectors JSRP Vectors On-Chip ROM	User Memory		01 01 01 01 01
BFFF:BFFE : : 0301:0300	External Expansion			01 00 00
02FF:02FE : : 01C1:01C0	} On-Chip RAM	User RAM		00
0195:0194	WATCHDOG Register	WATCHDOG Logic		00
0192 0191:0190 018F:018 018D:018C 018B:018A 0189:0188 0187:0186 0185:0184	TOCON Register TMMODE Register DIVBY Register T3 Timer R3 Register T2 Timer R2 Register I2CR Register/ R1	Timer Block T0:T3		00 00 00 00 00 00 00
0183:0182 0181:0180 015E:015F 015C 0153:0152 0151:0150 014F:014E 014D:014C 014B:014A	I3CR Register/ T1 I4CR Register EICR EICON Port P Register PWMODE Register R7 Register T7 Timer R6 Register	Timer Block T4:T7		00 00 00 00 00 00 00
0140.014A		TIME DIOCK 14.17		00

	II HPC 10004	
0128 0126 0124 0122 0120	ENUR Register TBUF Register RBUF Register ENUI Register ENU Register	UART
0104	Port D Input Register	
00F5:00F4 00F3:00F2 00F1:00F0	BFUN Register DIR B Register DIR A Register/IBUF	Ports A & B Control
00E6	UPIC Register	UPI Control
00E3:00E2 00E1:00E0	Port B Port A/OBUF	Ports A & B
00DE 00DD:00DC 00D8 00D6 00D4 00D2 00D0	Reserved HALT Enable Register Port I Input Register SIO Register IRCD Register IRPD Register ENIR Register	Port Control & Interrupt Control Registers
00CF:00CE 00CD:00CC 00CB:00CA 00C9:00C8 00C7:00C6 00C5:00C4 00C3:00C2 00C0	X Register B Register K Register PC Register PC Register SP Register Reserved PSW Register	HPC Core Registers
00BF:00BE : : 0001:0000	On-Chip RAM	User RAM

0201:0200 J ODF3:00F2 DIR B Hegister Control 01FF:01FE . . ODF3:00F2 DIR B Hegister Control 01C1:01C0 On-Chip RAM User RAM ODE6 UPIC Register UPI Co 0192 TOCON Register WATCHDOG Register ODE3:00E2 Port B Port A/OBUF Ports A 0192 TOCON Register DIVBY Register ODE3:00E2 Port A/OBUF Port A/OBUF Port Co 0185:0184 DIVBY Register Timer Block T0:T3 ODE6 SIO Register Port Co 0185:0184 I2CR Register/R1 Timer Block T0:T3 ODE Register Port Co 0185:0184 I2CR Register/R1 Timer Block T0:T3 ODC ODE Negister Port Co 0185:0185 EICR ODE Register ODC ODE Negister Register 0151:0150 Port Provide Register ODCE X Register Register Register 0151:0150 PORT Register Timer Block T4:T7 ODCS:00C2 Register Register 0026:00C4 FP Register	FFEF:FD0 FCC:FFCC :JSRP Vectors FCC:FFCC :On-Chip EPROMUser Memory0126TBUF Register RBUF RegisterUARTDFF:DFFE :External Expansion MemoryUser Memory0122ENUI Register 01200124RBUF Register RUI RegisterUART01120DFF:DFFE :External Expansion MemoryUser RAM00F3:00F2DIR B Register DIR B RegisterPorts A & Control0151:0100On-Chip RAM 0112:010100User RAMUser RAM00E6UPIC Register DIR A RegisterPorts A & Control0192 0191:0190TOCON Register 0191:0190TOCON Register Timer 0185:0184WATCHDOG Register TimerWATCHDOG Logic00E6UPIC Register DIR A RegisterPort S A & Control0180:0184 0185:0184 0183:0182TOCON Register Timer 0185:0184 12CR Register/T1Timer Block T0:T300DE 00D4Reserved HALT Enable Register 00D6Port I Input Register ODD2Port Control Register0155:015F 0155:015F 0151:0150 0145:0144 0143:0142EICR RegisterTimer Block T4:T700CF:00CE 00C3:00C2X Register RegisterPC Control Register0145:0144 0143:0142R6 Register T6 TimerTimer Block T4:T700BF:00BE 0CC3:00C2On-Chip RegisterUser RAI 00BF:00BE 0CC3:00C2User RAI 00BF:00BE 0CC3:00C2User RAI 00BF:00BE 0CC3:00C2User RAI 00BF:00BE 0CC3:00C2User RAI 00BF:00BE 0CC3:00C2User RAI 00BF:00BE 0CC3:00C2User RAI 00BF:00BE 0CC3:00C2User RAI<	FFEF:FD0 FCC:FFCE : : 001:E000JSRP Vectors FCC:FFCE : : 001:E000JSRP Vectors FCC:FFCE : : 001:E000JSRP Vectors FCC:FFCE : : 001:E000JSRP Vectors FCC:FFCE : : 001:E000JSRP Vectors FCC:FFCE : : 001:E000JSRP Vectors FCC:FFCE : : : : : 001:E0000JSRP Vectors FCC:FFCE : 	FFEF:FD0 FCC:FFCE : : 001:E000JSRP Vectors FCC:FFCE : : 001:E000JSRP Vectors FCC:FFCE : : 001:E000JSRP Vectors FCC:FFCE : : 001:E000JSRP Vectors FCC:FFCE : : 001:E000JSRP Vectors FCC:FFCE : : 001:E000JSRP Vectors FCC:FFCE : : : : : 001:E000JSRP Vectors FCC:FFCE :		TABLE	V. Memory Map of HPC1	167064 Emulating a	an HPC16083	
DFFF:DFFE :External Expansion MemoryExternal Expansion MemoryPorts A Control011:02:00 <th>DFFF:DFFE :External Expansion MemoryExternal Expansion MemoryPorts A & Control011:02:0000FF:01FE ::00F5:00F4BFUN Register DIR A Register /IBUFPorts A & Control011:01:0000F5:0194WATCHDOG RegisterWATCHDOG Logic00E6UPIC RegisterUPI Cont0192TOCON Register O191:0190TOCON Register TMMODE RegisterWATCHDOG Logic00E3:00E2 OOE1:00E0Port A/OBUFPorts A & Control0185:0186DIVBY Register O185:0186Ta Timer Imer O183:0182Timer ImerTimer Block T0:T300D6SIO Register ODD6Port Con SIO RegisterPort Con Register0151:0150EICR O152:015FEICR EICN O151:0150Port P Register Port P RegisterTimer Block T4:T700CF:00CE OOCS:00CAX Register RegisterPort Con Register0151:0150PWMODE Register O151:0150FilceR POMODE RegisterTimer Block T4:T700CF:00CE OCS:00C4X Register PC RegisterHPC Cor Register0143:0142R4 Register O145:0144T6 Timer O143:0142Timer R RegisterTimer Block T4:T700DF:00E OCS:00C4SP Register Register00CF:00E RAMV Register OOCS:00C40143:0142R4 RegisterTimer R RegisterTimer Block T4:T700CF:00E OCS:00C4SP Register Register00CF:00E RAMV Register0143:0142R4 RegisterTimer R RegisterTimer Block T4:T700CF:00E COCEOn-Chip RAMV RA<th>DFFF:DFFE :External Expansion MemoryExternal Expansion MemoryPorts A & Control01F:01FE ::On-Chip RAMUser RAMUser RAMDIR A Register /IBUFPorts A & Control01F:01C0On-Chip RAMUser RAMUser RAMOE6UPIC RegisterUPI Control0195:0194WATCHDOG RegisterWATCHDOG LogicOE6UPIC RegisterPorts A & Control0192TOCON RegisterWATCHDOG RegisterPorts A & ControlPorts A & Control0191:0190TMMODE RegisterFimerPorts RegisterPort A/OBUFPorts A & Control0189:0186T3 TimerTimer Block T0:T3OD6SIC RegisterPort Control Register0185:0184I2CR Register/T1ICCR RegisterFimerOOC5:00CCSR RegisterPort Control Register0151:0150FICR DISS:0152Port P RegisterTimer Block T4:T7OC5:00CC4SP RegisterPC Register0151:0150PWMODE Register O151:0150Finer O147:0146Ta RegisterTimer Block T4:T7OC3:00C2Reserved0149:0148T6 Timer O145:0144T6 Timer O143:0142Ta RegisterTimer Block T4:T7OBF:00E ConceOn-Chip RAMUser RAM0143:0142R4 RegisterTimerTimer Block T4:T7OD5:00C4SP RegisterHPC Core Register0143:0142R4 RegisterTimerTimer Block T4:T7OD5:00C4SP RegisterHPC Core Register0143:0144R5 RegisterTimer<td< th=""><th>DFFF:DFFE :External Expansion MemoryExternal Expansion MemoryPorts A & Control011:020001F5:00F4BFUN Register DIR A Register /IBUFPorts A & Control01F7:01FE ::On-Chip RAMUser RAM00E6UPIC RegisterUPI Control0195:0194WATCHDOG RegisterWATCHDOG Logic00E6UPIC RegisterUPI Control0192TOCON RegisterWATCHDOG RegisterPorts A & Control00E6UPIC RegisterPorts A & Control0191:0190TMMODE RegisterTimerTimerPorts RegisterPort A/OBUFPorts A & Control0180:0186T3 TimerTimerTimer Block T0:T300DEReservedPort Control RegisterPort Control & Interrup Control0180:0186R3 RegisterTimerTimer Block T0:T300D4IRCD RegisterPort Control Register0181:0180I2CR Register/N11I2CR Register/N1100CF:00CEX RegisterPort Control Register0151:0150EICR 0151:0150PWMODE RegisterTimer Block T4:T700CS:00CAK RegisterHPC Core Register0149:0146T6 Timer 0147:0144T6 TimerTimer Block T4:T700E5:00E2On-Chip RAMUser RAM0143:0142R4 RegisterTimerTimer Block T4:T700E5:00E400C3:00C2Reserved0143:0142R4 RegisterTimerTimer Block T4:T700E5:00E400C3:00C2Reserved0143:0142R4 RegisterTimerTimer Block T4:T7</th></td<><th>FFEF:FFD0 FFCF:FFCE : :</th><th>JSRP Vectors</th><th>User Memory</th><th>0126 0124 0122</th><th>TBUF Register RBUF Register ENUI Register</th><th>UART</th></th></th>	DFFF:DFFE :External Expansion MemoryExternal Expansion MemoryPorts A & Control011:02:0000FF:01FE ::00F5:00F4BFUN Register DIR A Register /IBUFPorts A & Control011:01:0000F5:0194WATCHDOG RegisterWATCHDOG Logic00E6UPIC RegisterUPI Cont0192TOCON Register O191:0190TOCON Register TMMODE RegisterWATCHDOG Logic00E3:00E2 OOE1:00E0Port A/OBUFPorts A & Control0185:0186DIVBY Register O185:0186Ta Timer Imer O183:0182Timer ImerTimer Block T0:T300D6SIO Register ODD6Port Con SIO RegisterPort Con Register0151:0150EICR O152:015FEICR EICN O151:0150Port P Register Port P RegisterTimer Block T4:T700CF:00CE OOCS:00CAX Register RegisterPort Con Register0151:0150PWMODE Register O151:0150FilceR POMODE RegisterTimer Block T4:T700CF:00CE OCS:00C4X Register PC RegisterHPC Cor Register0143:0142R4 Register O145:0144T6 Timer O143:0142Timer R RegisterTimer Block T4:T700DF:00E OCS:00C4SP Register Register00CF:00E RAMV Register OOCS:00C40143:0142R4 RegisterTimer R RegisterTimer Block T4:T700CF:00E OCS:00C4SP Register Register00CF:00E RAMV Register0143:0142R4 RegisterTimer R RegisterTimer Block T4:T700CF:00E COCEOn-Chip RAMV RA <th>DFFF:DFFE :External Expansion MemoryExternal Expansion MemoryPorts A & Control01F:01FE ::On-Chip RAMUser RAMUser RAMDIR A Register /IBUFPorts A & Control01F:01C0On-Chip RAMUser RAMUser RAMOE6UPIC RegisterUPI Control0195:0194WATCHDOG RegisterWATCHDOG LogicOE6UPIC RegisterPorts A & Control0192TOCON RegisterWATCHDOG RegisterPorts A & ControlPorts A & Control0191:0190TMMODE RegisterFimerPorts RegisterPort A/OBUFPorts A & Control0189:0186T3 TimerTimer Block T0:T3OD6SIC RegisterPort Control Register0185:0184I2CR Register/T1ICCR RegisterFimerOOC5:00CCSR RegisterPort Control Register0151:0150FICR DISS:0152Port P RegisterTimer Block T4:T7OC5:00CC4SP RegisterPC Register0151:0150PWMODE Register O151:0150Finer O147:0146Ta RegisterTimer Block T4:T7OC3:00C2Reserved0149:0148T6 Timer O145:0144T6 Timer O143:0142Ta RegisterTimer Block T4:T7OBF:00E ConceOn-Chip RAMUser RAM0143:0142R4 RegisterTimerTimer Block T4:T7OD5:00C4SP RegisterHPC Core Register0143:0142R4 RegisterTimerTimer Block T4:T7OD5:00C4SP RegisterHPC Core Register0143:0144R5 RegisterTimer<td< th=""><th>DFFF:DFFE :External Expansion MemoryExternal Expansion MemoryPorts A & Control011:020001F5:00F4BFUN Register DIR A Register /IBUFPorts A & Control01F7:01FE ::On-Chip RAMUser RAM00E6UPIC RegisterUPI Control0195:0194WATCHDOG RegisterWATCHDOG Logic00E6UPIC RegisterUPI Control0192TOCON RegisterWATCHDOG RegisterPorts A & Control00E6UPIC RegisterPorts A & Control0191:0190TMMODE RegisterTimerTimerPorts RegisterPort A/OBUFPorts A & Control0180:0186T3 TimerTimerTimer Block T0:T300DEReservedPort Control RegisterPort Control & Interrup Control0180:0186R3 RegisterTimerTimer Block T0:T300D4IRCD RegisterPort Control Register0181:0180I2CR Register/N11I2CR Register/N1100CF:00CEX RegisterPort Control Register0151:0150EICR 0151:0150PWMODE RegisterTimer Block T4:T700CS:00CAK RegisterHPC Core Register0149:0146T6 Timer 0147:0144T6 TimerTimer Block T4:T700E5:00E2On-Chip RAMUser RAM0143:0142R4 RegisterTimerTimer Block T4:T700E5:00E400C3:00C2Reserved0143:0142R4 RegisterTimerTimer Block T4:T700E5:00E400C3:00C2Reserved0143:0142R4 RegisterTimerTimer Block T4:T7</th></td<><th>FFEF:FFD0 FFCF:FFCE : :</th><th>JSRP Vectors</th><th>User Memory</th><th>0126 0124 0122</th><th>TBUF Register RBUF Register ENUI Register</th><th>UART</th></th>	DFFF:DFFE :External Expansion MemoryExternal Expansion MemoryPorts A & Control01F:01FE ::On-Chip RAMUser RAMUser RAMDIR A Register /IBUFPorts A & Control01F:01C0On-Chip RAMUser RAMUser RAMOE6UPIC RegisterUPI Control0195:0194WATCHDOG RegisterWATCHDOG LogicOE6UPIC RegisterPorts A & Control0192TOCON RegisterWATCHDOG RegisterPorts A & ControlPorts A & Control0191:0190TMMODE RegisterFimerPorts RegisterPort A/OBUFPorts A & Control0189:0186T3 TimerTimer Block T0:T3OD6SIC RegisterPort Control Register0185:0184I2CR Register/T1ICCR RegisterFimerOOC5:00CCSR RegisterPort Control Register0151:0150FICR DISS:0152Port P RegisterTimer Block T4:T7OC5:00CC4SP RegisterPC Register0151:0150PWMODE Register O151:0150Finer O147:0146Ta RegisterTimer Block T4:T7OC3:00C2Reserved0149:0148T6 Timer O145:0144T6 Timer O143:0142Ta RegisterTimer Block T4:T7OBF:00E ConceOn-Chip RAMUser RAM0143:0142R4 RegisterTimerTimer Block T4:T7OD5:00C4SP RegisterHPC Core Register0143:0142R4 RegisterTimerTimer Block T4:T7OD5:00C4SP RegisterHPC Core Register0143:0144R5 RegisterTimer <td< th=""><th>DFFF:DFFE :External Expansion MemoryExternal Expansion MemoryPorts A & Control011:020001F5:00F4BFUN Register DIR A Register /IBUFPorts A & Control01F7:01FE ::On-Chip RAMUser RAM00E6UPIC RegisterUPI Control0195:0194WATCHDOG RegisterWATCHDOG Logic00E6UPIC RegisterUPI Control0192TOCON RegisterWATCHDOG RegisterPorts A & Control00E6UPIC RegisterPorts A & Control0191:0190TMMODE RegisterTimerTimerPorts RegisterPort A/OBUFPorts A & Control0180:0186T3 TimerTimerTimer Block T0:T300DEReservedPort Control RegisterPort Control & Interrup Control0180:0186R3 RegisterTimerTimer Block T0:T300D4IRCD RegisterPort Control Register0181:0180I2CR Register/N11I2CR Register/N1100CF:00CEX RegisterPort Control Register0151:0150EICR 0151:0150PWMODE RegisterTimer Block T4:T700CS:00CAK RegisterHPC Core Register0149:0146T6 Timer 0147:0144T6 TimerTimer Block T4:T700E5:00E2On-Chip RAMUser RAM0143:0142R4 RegisterTimerTimer Block T4:T700E5:00E400C3:00C2Reserved0143:0142R4 RegisterTimerTimer Block T4:T700E5:00E400C3:00C2Reserved0143:0142R4 RegisterTimerTimer Block T4:T7</th></td<> <th>FFEF:FFD0 FFCF:FFCE : :</th> <th>JSRP Vectors</th> <th>User Memory</th> <th>0126 0124 0122</th> <th>TBUF Register RBUF Register ENUI Register</th> <th>UART</th>	DFFF:DFFE :External Expansion MemoryExternal Expansion MemoryPorts A & Control011:020001F5:00F4BFUN Register DIR A Register /IBUFPorts A & Control01F7:01FE ::On-Chip RAMUser RAM00E6UPIC RegisterUPI Control0195:0194WATCHDOG RegisterWATCHDOG Logic00E6UPIC RegisterUPI Control0192TOCON RegisterWATCHDOG RegisterPorts A & Control00E6UPIC RegisterPorts A & Control0191:0190TMMODE RegisterTimerTimerPorts RegisterPort A/OBUFPorts A & Control0180:0186T3 TimerTimerTimer Block T0:T300DEReservedPort Control RegisterPort Control & Interrup Control0180:0186R3 RegisterTimerTimer Block T0:T300D4IRCD RegisterPort Control Register0181:0180I2CR Register/N11I2CR Register/N1100CF:00CEX RegisterPort Control Register0151:0150EICR 0151:0150PWMODE RegisterTimer Block T4:T700CS:00CAK RegisterHPC Core Register0149:0146T6 Timer 0147:0144T6 TimerTimer Block T4:T700E5:00E2On-Chip RAMUser RAM0143:0142R4 RegisterTimerTimer Block T4:T700E5:00E400C3:00C2Reserved0143:0142R4 RegisterTimerTimer Block T4:T700E5:00E400C3:00C2Reserved0143:0142R4 RegisterTimerTimer Block T4:T7	FFEF:FFD0 FFCF:FFCE : :	JSRP Vectors	User Memory	0126 0124 0122	TBUF Register RBUF Register ENUI Register	UART
:MemoryOPT:SOP7BFUN RegisterPorts A0201:0200On-Chip RAMUser RAMUser RAM00F3:00F2DIR A RegisterPorts A011:01C0On-Chip RAMUser RAM00E6UPIC RegisterUPIC RegisterUPIC Register0192TOCON RegisterWATCHDOG RegisterWATCHDOG Logic00E3:00E2Port A/OBUFPorts A0192TOCON RegisterTIMMODE RegisterVATCHDOG Logic00DEReservedPort A/OBUFPorts A0185:0186DIVBY RegisterTimerTimer Block T0:T300DENegisterPort I Input RegisterPort Cc0185:018412CR Register/T1Timer Block T0:T300D2IRPD RegisterRegisterRegister0183:018213CR Register/T1IdCR Register00D2IRPD RegisterRegister0153:0152Port P RegisterFICR00CF:00CEX RegisterRegister0151:0150PWMODE RegisterTimer Block T4:T700C5:00C4SP RegisterRegister0147:0146R7 RegisterTimer Block T4:T700C5:00C4SP RegisterRegister0142:0144R6 RegisterTimerTimer Block T4:T700C5:00C4SP RegisterRegister0142:0144R5 RegisterTimerTimer Block T4:T700BBOn-ChipRAM0143:0142R4 RegisterTimerTimer Block T4:T700BBOn-ChipRAM0143:0144R6 RegisterTimerTimerTimer Block T4:T700BBOn-ChipRegister	:MemoryOPTPorts A &0201:0200OODIFDIR B RegisterPorts A &01FF:01FE:On-Chip RAMUser RAMUser RAMOE6UPIC RegisterUPI C nt0101:0100TOCON RegisterWATCHDOG RegisterWATCHDOG LogicODE6UPIC RegisterUPI C nt0192TOCON RegisterWATCHDOG RegisterWATCHDOG LogicODEPort A /OBUFPorts A &0192TOCON RegisterTMMODE RegisterWATCHDOG LogicODEPort A /OBUFPorts A &0180:018CT3 TimerTimerTimer Block T0:T3ODENegisterPort I Input RegisterPort Con0180:018CT3 TimerTimer Block T0:T3ODDENIR RegisterPort ORRegister0180:018CI2CR Register/T1Timer Block T0:T3ODDENIR RegisterPort Con0181:0180I4CR RegisterI3CR Register/T1ODDENIR RegisterPort Con0153:0152Port P RegisterFilmerFilmer Block T4:T7OC5:00C4SP RegisterRegister0147:014CT7 TimerTimer Block T4:T7OODS:00C2ReservedOOC5:00C4SP RegisterRegister0149:0143T6 TimerTimer Block T4:T7OODS:00C2ReservedOOC5:00C4SP RegisterRegister0149:0142R4 RegisterT1 TimerTimer Block T4:T7OODS:00C2ReservedOOC5:00C4SP Register0149:0142R4 RegisterT1 TimerTimer Block T4:T7OOS:00C2Reserv	:MemoryMemoryPorts A & Control0201:0200OrF:00F4BFUN RegisterPorts A & Control01FF:01FE:On-Chip RAMUser RAMUser RAM0195:0194WATCHDOG RegisterWATCHDOG Logic00E6UPIC RegisterUPI Control0192TOCON RegisterWATCHDOG RegisterPorts A & ControlPorts A & Control0192TOCON RegisterWATCHDOG RegisterPorts A & ControlPorts A & Control0192TOCON RegisterWATCHDOG RegisterPorts A & Control0180:018CT3 TimerTimer Block T0:T300DEReserved0180:0186T2 TimerTimer Block T0:T300D2IRPD Register0183:0182I3CR Register/T1Timer Block T0:T300CF:00CEX Register0181:0180I4CR RegisterFort Register00CC:00CCB Register0151:0150Port P RegisterFiler00CS:00CAK Register0151:0150PWMODE RegisterTimer Block T4:T700CS:00C4SP Register0147:0144R6 RegisterTimerTimer Block T4:T70149:0148T6 TimerTimer Block T4:T700CF:00CEX Register0142:0144R6 RegisterTimerFiler00CF:00CE0142:0144R6 RegisterTimerFiler00CF:00CE0143:0142R4 RegisterTimerFiler00CF:00CE0143:0142R4 RegisterFilerFiler0143:0142R4 RegisterFilerFiler01	:MemoryMemoryPorts A & Control0201:0200OrF:00F4BFUN RegisterPorts A & Control01FF:01FE:On-Chip RAMUser RAMUser RAM0195:0194WATCHDOG RegisterWATCHDOG Logic00E6UPIC RegisterUPI Control0192TOCON RegisterWATCHDOG RegisterPorts A & ControlPorts A & Control0192TOCON RegisterWATCHDOG RegisterPorts A & ControlPorts A & Control0192TOCON RegisterWATCHDOG RegisterPorts A & Control0180:018CT3 TimerTimer Block T0:T300DEReserved0180:0186T2 TimerTimer Block T0:T300D2IRPD Register0185:0184I2CR Register/T1OOCE:00CEX RegisterPort Control0181:0180I4CR RegisterFort Register00CE:00CERegister0151:0150Port P RegisterFiler00CE:00CEX Register0151:0150PWMODE RegisterTimer Block T4:T700CE:00CEX Register0141:014ER7 RegisterTimer Block T4:T700CB:00C4SP Register0142:0144R6 RegisterTimer00CE:00C2Reserved0142:0144R6 RegisterTimer00CE:00C4SP Register0143:0142R4 RegisterTimerTimer Block T4:T70143:0142R4 RegisterTimerTimer Block T4:T70143:0142R4 RegisterTimerTimer Block T4:T70143:0142R4 RegisterTimerTimer <td></td> <td></td> <td></td> <td>0104</td> <td>Port D Input Register</td> <td></td>				0104	Port D Input Register	
01FF:01FE :On-Chip RAMUser RAM01G1:01C0On-Chip RAMUser RAM0195:0194WATCHDOG RegisterWATCHDOG Logic0192T0CON RegisterWATCHDOG Logic0192TOCON RegisterPort B0191:0190TMMODE RegisterPort B0181:018CT3 TimerPort B0188:018AR3 RegisterPort B0188:018AT2 TimerTimer Block T0:T30181:0180I2CR Register/R1OODE0181:0180I4CR Register/R10151:015FEICR0152:015FEICR0153:0152Port P Register0145:0144R7 Register0148:014AR6 Register0148:014AR6 Register0149:0142R7 Register0143:0142R4 Register0143:0142R4 Register	01FF:01FE :On-Chip RAMUser RAM00E6UPIC RegisterUPI Cont015:0102015:0194WATCHDOG RegisterWATCHDOG LogicPort B Port A/OBUFPorts A & Ports A & 00E1:00E0Port A/OBUFPorts A & Port A/OBUF0192T0CON Register 0181:0190TMMODE Register TMMODE RegisterTimer Block T0:T300E6UPIC Register Port A/OBUFPorts A & Port A/OBUF0185:0184R3 Register 0185:0184T2 Timer 12CR Register/R1Timer Block T0:T300D6SIO Register 00D4Port Con Begister0185:0184I2CR Register/R1 0181:0180I4CR RegisterTimer Block T0:T300CF:00CE 00CBX Register 00D2Register BegisterPort Con & InPD Register0155:015FEICR 015CEICN 0145:0144F7 RegisterTimer Block T4:T700C9:00C6 00C3:00C2X Register BegisterHPC Cor Begister0148:014A 0143:0142R6 Register R6 RegisterTimer Block T4:T700BF:00BE 00C3:00C2On-Chip RAMUser RAI 001:00000143:0142R4 RegisterTimer 4 RegisterUser RAI	01FF:01FE :On-Chip RAMUser RAM00E6UPIC RegisterUPI Contr0115:01C00192TOCON RegisterWATCHDOG Logic00E1:00E0Port A / OBUFPorts A &0192TOCON RegisterTMMODE RegisterDIVBY Register00E1:00E0Port A / OBUFPort S A &0181:0190TMMODE RegisterDIVBY RegisterTimer00E6UPIC RegisterPort A / OBUFPort S A &0185:0184DIVBY RegisterTimerTimer Block T0:T300D6SIO RegisterPort I Input RegisterPort Onto0180:0186R2 RegisterTimerTimer Block T0:T300D6ENIR RegisterPort OntoRegister0187:0186R2 Register/T1013E:015FEICR00CF:00CEX RegisterRegister0181:0180IACR RegisterIACR Register00CS:00CAK RegisterPC Corr0155:015FEICRFOR PRegister00CS:00C4SP RegisterRegister0145:014CR7 RegisterTimer Block T4:T700BF:00BEOCS:00C4SP Register0149:014CR6 RegisterTimerTimer Block T4:T700BF:00BEIOn-ChipUser RAM0149:0142R4 RegisterT6 TimerOUS:0000PSW RegisterUser RAM0143:0142R4 RegisterF0 TimerF0 TimerOUS:0000PSW RegisterUser RAM	01FF:01FE :On-Chip RAMUser RAM00E6UPIC RegisterUPI Contr0115:01C00192TOCON RegisterWATCHDOG Logic00E3:00E2Port B 0DE1:00E0Port A/OBUFPorts A &0192TOCON RegisterTMMODE RegisterTimer Block T0:T300E6UPIC RegisterPort A/OBUFPorts A &0181:0180T3 TimerTimer Block T0:T300E6UPIC RegisterPort A/OBUFPort Control0188:0184R3 RegisterTimerTimer Block T0:T300D6SIO RegisterPort OntolRegister0187:0186R2 Register/R1015C:015FEICR00CF:00CEX RegisterPort SARegister0151:0150PWMODE RegisterTimer Block T4:T700CF:00CEX RegisterPort Bregister0145:0144R7 RegisterTimer Block T4:T700BF:00BE00C-ChipRegister0149:0142R4 RegisterTimerTimer Block T4:T700BF:00BE00-ChipUser RAM0143:0142R4 RegisterTimerTimer Block T4:T700BF:00BE00-ChipUser RAM	: :			00F3:00F2	DIR B Register	Ports A & Control
01C1:01C0JOUE3:00E2 OUE3:00E0Port B Port A/OBUFPorts A0195:0194WATCHDOG Register UMMODE Register 	01C1:01C0JODE3:00E2 ODE1:00E0Port B Port A/OBUFPorts A 80192TOCON Register O191:0190TMMODE Register TMMODE Register 0186:018C 0188:018A 0188:018A 0187:0186Twimer Timer TimerTimer Block T0:T3ODE ODEReserved ODD:00DC ODE ODEPort A/OBUFPort A 80180:0180T3 Timer Timer 0187:0186Ta Timer Register 0187:0186Timer Register/T1Timer Block T0:T3 ODEODE ODEReserved Port I Input Register ODE ODEPort A/OBUFPort A 80187:0186R2 Register/R1 10180:0182Timer BCR Register/T1Timer Block T0:T3 ODEODE ODESIO Register ODE ODEPort B Port I Input Register ODE ODEPort On & Incrum Control Register0155:0157EICR EICN 0155:0157EICR EICN O155OCF:00CE OCC3:00C4X Register ODC3:00C2HPC Cor Register0151:0150PWMODE Register O147:014CT7 Timer O148:014A R6 RegisterTimer Block T4:T7O0BF:00BE OCC3:00C4On-Chip RAMUser RAI 001:00000143:0142R4 Register O143:0142R4 RegisterUser RAI O143:0142NegisterUser RAI ONE	01C1:01C0JODE3:00E2 00E3:00E0Port B Port A/OBUFPorts A &0192TOCON Register 0191:0190TMMODE Register TMMODE Register 0186:018C 0188:018A 0188:018A 0187:0186Tamer Tamer TimerTimer Block T0:T3ODE 00D6Reserved 00D1:00DC 00D6Port I Input Register Port I Input Register 00D6Port OBE NODE NODEPort Control & Incore Register ODD60187:0186R2 Register/R1 10180:0182Timer 0187:0186Timer R2 Register/R1Timer Block T0:T3 00D2ODE 00D4RD Register 00D2Port I Input Register 00D4Port Ord & Incore Register 00D20185:0184I2CR Register/R1 10180:0180I4CR Register/T1 10181:0180OCF:00CE 10CR RegisterX Register 00C2: 00CB:00CA 00C9:00C8X Register A RegisterPort Control & Incore Register 00D20150:0157EICR 0145:0142Fort Register RegisterTimer Block T4:T7 0023:00C2OOC6:00C4 PC Register OOC3:00C2S Register POR RegisterHPC Core Register0149:0142R4 Register 0143:0142Fort Imer RAMOn-Chip RAMUser RAM0143:0142R4 RegisterHPC core RAMOn-Chip RAMUser RAM	01C1:01C0JOUE3:00E2 0195:0194Port B Port A/OBUFPorts A &0192TOCON Register 0191:0190TMMODE Register TMMODE Register 0185:0186WATCHDOG Logic00DE 00DEReserved 00DD:00DCPort A/OBUFPort S A &0182:0186T3 Timer 0187:0186T3 Timer 12 TimerTimer Block T0:T300E3:00E2 00EPort A/OBUFPorts A &0185:0184R3 Register 12 Register/ 0185:0184T2 Timer 12 Register/R1Timer Block T0:T300DE 00D6Reserved 00D4Port Ont Begister 00D2Port I Input Register Port I Input Register 00D6Port Ont & Interrup Control Register0185:0184I2CR Register/R1 12CR Register/T1Timer Block T0:T300CF:00CE 00C2X Register 00D2RegisterPort Cont & IRPD Register 00D20155:015FEICR EICON 0145:0142FICR RegisterPort P Register 00C3:00C2N RegisterPort Cont POCC:00CC0145:0142R4 RegisterTimer Block T4:T7O0BF:00BE 1On-Chip RAMN RAM0143:0142R4 RegisterTimer 0143:0142On-Chip RAMUser RAM		On-Chip BAM	User RAM		Ŭ	UPI Contr
OldscoleWither Book LogisterWither Book LogisterODEReserved0192TOCON RegisterTMMODE Register00DEHALT Enable RegisterPort Co0181:0190TMMODE RegisterDIVBY RegisterTimerFilmer00DEHALT Enable RegisterPort Co0189:0186T3 TimerTimer Block T0:T300D4IRCD RegisterControlRegister0189:0188T2 TimerTimer Block T0:T300D2IRPD RegisterRegisterControl0185:0184I2CR Register/R10183:0182I3CR Register/C100CF:00CEX RegisterRegister0185:015FEICREICN00CF:00CEX RegisterRegister00CS:00CAK Register0152:015FEICRFort P Register00C5:00C4SP RegisterRegister0145:0142R7 RegisterTimer Block T4:T700BF:00BEOn-ChipRAM0143:0142R4 RegisterTimer00BF:000DRAMUser R.	OldscoleWitter Ded LogicWitter Ded Logic0192TOCON RegisterODDEReserved0191:0190TMMODE RegisterPort Con0181:0190TMMODE RegisterPort Con0181:0190DIVBY RegisterFirmer0181:0180T3 TimerFirmer0188:0184R3 RegisterTimer Block T0:T30189:0186T2 TimerFirmer0185:0184I2CR Register/R1ODD20185:0184I2CR Register/R10185:0184I2CR Register/T10185:0155EICR0155:0157EICN0152:0156EICN0153:0152Port P Register0145:0142R7 Register0148:014AR6 Register0148:014AR6 Register0148:014AR6 Register0143:0142R4 Register0143:0142R4 Register	OldstoldsWitter Ded Edgic0192TOCON Register0191:0190TMMODE Register0181:0190TMMODE Register0185:0186DIVBY Register0188:0188T2 Timer0189:0188T2 Timer0185:0184I2CR Register/R10185:0184I2CR Register/R10185:015FEICR015E:015FEICR015C:015FEICN0152:0152Port P Register0153:0152Port P Register0145:0142R7 Register0148:014AR6 Register0148:014AR6 Register0148:014AR6 Register0143:0142R4 Register0143:0142R4 Register	OldscoleWither block LogicWither block Logic0192TOCON RegisterIMMODE RegisterPort Control0191:0190TMMODE RegisterDIVBY RegisterPort I Input Register0180:0186T3 TimerFilmerPort Control0180:0188T2 TimerTimer Block T0:T3ODDEHALT Enable Register0180:0188T2 TimerTimer Block T0:T3ODDESIO Register0180:0184I2CR Register/R1ODDEIRCD RegisterPort Control0185:0184I2CR Register/ClasserODDEIRCD RegisterRegister0185:0184I2CR Register/ClasserODCEX RegisterRegister0185:0155EICRODCEX RegisterODCE:00CEX Register0155:0156EICNOOCS:00CAK RegisterHPC Core0145:0142R7 RegisterTimer Block T4:T7OOES:00C4SP Register0148:014AR6 RegisterTimer Block T4:T7OOBF:00BEOn-Chip0149:0148T6 TimerTimer Block T4:T7OOBF:00DEOn-Chip0143:0142R4 RegisterFo TimerOOBF:00BEOn-Chip0143:0142R4 RegisterFo TimerIter Paint0143:0142R4 RegisterFo TimerFo Timer0143:0142R4 RegisterFo TimerFo Timer0143:0142R4 RegisterFo Timer0143:0142R4 RegisterFo Timer0143:0142R4 RegisterFo Timer0143:0142R4 RegisterFo Timer0143:0142 <td>01C1:01C0</td> <td>J .</td> <td></td> <td></td> <td></td> <td>Ports A &</td>	01C1:01C0	J .				Ports A &
0185:0184 I2CR Register/R1 0183:0182 I3CR Register/T1 0181:0180 I4CR Register 0152:015F EICR 0155:015F EICR 0155:015C EICON 0151:0150 PWMODE Register 0151:0150 PWMODE Register 0151:0150 PWMODE Register 014F:014E R7 Register 0148:014A R6 Register 0148:014A R6 Register 0149:0148 T6 Timer 0143:0142 R4 Register	0185:0184I2CR Register/R10185:0184I3CR Register/T10181:0180I4CR Register/T10151:015FEICR015E:015FEICR015CEICN0153:0152Port P Register0151:0150PWMODE Register0151:0150PWMODE Register014E:014AR6 Register0142:014CT7 Timer0148:014AR6 Register0143:0142R4 Register0143:0142R4 Register	0185:0184I2CR Register/R10183:0182I3CR Register/T10181:0180I4CR Register/T10151:015FEICR015CEICN015CEICN0153:0152Port P Register0151:0150PWMODE Register0151:0150PWMODE Register014E:014AR6 Register0142:014CT7 Timer0148:014AR6 Register0143:0142R4 Register0143:0142R4 Register	0185:0184 I2CR Register/R1 00CF:00CE X Register 0183:0182 I3CR Register/T1 00CF:00CC B Register 0151:0180 I4CR Register 00CD:00CC B Register 0152:015F EICR 00CS:00CA K Register 0155:015C EICON 00C5:00C4 SP Register 0151:0150 PWMODE Register 00C5:00C4 SP Register 0141:014C T7 Timer Timer Block T4:T7 00BF:00BE 00C-Chip 0148:014A R6 Register 0147:0146 T6 Timer 00BF:00BE 00-Chip 0143:0142 R4 Register 0143:0142 R4 Register 0001:0000 Viser RAM	0192 0191:0190 018F:018E 018D:018C 018B:018A 0189:0188	TOCON Register TMMODE Register DIVBY Register T3 Timer R3 Register T2 Timer		00DE 00DD:00DC 00D8 00D6 00D4 00D2	Reserved HALT Enable Register Port I Input Register SIO Register IRCD Register IRPD Register	Port Conti & Interrup Control Registers
OldColor ElCON OCC7:00C6 PC Register Register 0152:0152 Port P Register 00C7:00C4 SP Register SP Register 0151:0150 PWMODE Register 00C3:00C2 Reserved OC3:00C2 014D:014C T7 Timer Timer Block T4:T7 OOBF:00BE On-Chip 0149:0148 T6 Timer T6 Timer OOBF:0000 RAM 0147:0146 R5 Register User R. OO01:0000 RAM	O15CEICON00C7:00C6PC RegisterRegister0153:0152Port P Register00C5:00C4SP RegisterRegister0151:0150PWMODE Register00C3:00C2Reserved00C3:00C20140:014CT7 TimerTimer Block T4:T700BF:00BE00C-Chip0149:0148T6 TimerT6 Timer00BF:00BE0n-Chip0147:0146R5 Register0145:0144T5 Timer0143:0142R4 Register0143:0142R4 Register	O15CEICON00C7:00C6PC RegisterRegister0153:0152Port P Register00C5:00C4SP Register00C5:00C4SP Register0145:014ER7 Register00C3:00C2Reserved00C3:00C2Reserved014D:014CT7 TimerTimer Block T4:T700BF:00BEOn-ChipUser RAM0149:0148T6 Timer0147:0146R5 Register0001:0000RAMUser RAM0143:0142R4 Register0143:0142R4 Register0001:0000RAMUser RAM	OldClose ElCON OUC7:00C6 PC Register Register 0153:0152 Port P Register 00C7:00C6 SP Register Register 0151:0150 PWMODE Register 00C7:00C6 SP Register Register 0141:014C T7 Timer 00C3:00C2 Reserved 00C0 0140:014C T7 Timer Timer Block T4:T7 00BF:00BE On-Chip 0149:0148 T6 Timer T6 Timer User RAM 0147:0146 R5 Register User RAM 0143:0142 R4 Register Heigister	0185:0184 0183:0182 0181:0180	I2CR Register/R1 I3CR Register/T1 I4CR Register		00CD:00CC 00CB:00CA	X Register B Register K Register	
014B:014A R6 Register Timer Block 14:17 Simple	014B:014A R6 Register Timer Block 14:17 S. On-Chip User RAI 0149:0148 T6 Timer 0145:0146 R5 Register 0145:0147 S. S. 0001:0000 RAM User RAI 0143:0142 R4 Register 0143:0142 R4 Register 0 <t< td=""><td>014B:014A R6 Register 0149:0148 T6 Timer 0147:0146 R5 Register 0143:0142 R4 Register 0143:0142 R4 Register</td><td>014B:014A R6 Register 0149:0148 T6 Timer 0147:0146 R5 Register 0143:0142 R4 Register 0143:0142 R4 Register</td><td>015C 0153:0152 0151:0150</td><td>EICON Port P Register PWMODE Register</td><td></td><td>00C7:00C6 00C5:00C4 00C3:00C2</td><td>PC Register SP Register Reserved</td><td>Registers</td></t<>	014B:014A R6 Register 0149:0148 T6 Timer 0147:0146 R5 Register 0143:0142 R4 Register 0143:0142 R4 Register	014B:014A R6 Register 0149:0148 T6 Timer 0147:0146 R5 Register 0143:0142 R4 Register 0143:0142 R4 Register	015C 0153:0152 0151:0150	EICON Port P Register PWMODE Register		00C7:00C6 00C5:00C4 00C3:00C2	PC Register SP Register Reserved	Registers
				014B:014A 0149:0148 0147:0146 0145:0144 0143:0142	R6 Register T6 Timer R5 Register T5 Timer R4 Register	Timer Block T4:T7	: :		User RAN
				0141:0140	T4 Timer				

Design Considerations (Continued)

Designs using the HPC family of 16-bit high speed CMOS microcontrollers need to follow some general guidelines on usage and board layout.

Floating inputs are a frequently overlooked problem. CMOS inputs have extremely high impedance and, if left open, can float to any voltage. You should thus tie unused inputs to V_{CC} or ground, either through a resistor or directly. Unlike the inputs, unused output should be left floating to allow the output to switch without drawing any DC current.

To reduce voltage transients, keep the supply line's parasitic inductances as low as possible by reducing trace lengths, using wide traces, ground planes, and by decoupling the supply with bypass capacitors. In order to prevent additional voltage spiking, this local bypass capacitor must exhibit low inductive reactance. You should therefore use high frequency ceramic capacitors and place them very near the IC to minimize wiring inductance.

- Keep V_{CC} bus routing short. When using double sided or multilayer circuit boards, use ground plane techniques.
- Keep ground lines short, and on PC boards make them as wide as possible, even if trace width varies. Use separate ground traces to supply high current devices such as relay and transmission line drivers.
- In systems mixing linear and logic functions and where supply noise is critical to the analog components' performance, provide separate supply buses or even separate supplies.
- If you use local regulators, bypass their inputs with a tantalum capacitor of at least 1 µF and bypass their outputs with a 10 µF to 50 µF tantalum or aluminum electrolytic capacitor.
- If the system uses a centralized regulated power supply, use a 10 µF to 20F tantalum electrolytic capacitor or a 50 µF to 100 µF aluminum electrolytic capacitor to decouple the V_{CC} bus connected to the circuit board.
- Provide localized decoupling. For random logic, a rule of thumb dictates approximately 10 nF (spaced within 12 cm) per every two to five packages, and 100 nF for every 10 packages. You can group these capacitances, but it's more effective to distribute them among the ICs. If the design has a fair amount of synchronous logic with outputs that tend to switch simultaneously, additional decoupling might be advisable. Octal flip-flop and buffers in bus-oriented circuits might also require more decoupling. Note that wire-wrapped circuits can require more decoupling than ground plane or multilayer PC boards.

A recommended crystal oscillator circuit to be used with the HPC is shown in *Figure 29*. See table for recommended component values. The recommended values given in Table V have yielded consistent results and are made to match a crystal with a 20 pF load capacitance, with some small allowance for layout capacitance.

A recommended layout for the oscillator network should be as close to the processor as physically possible, entirely within 1" distance. This is to reduce lead inductance from long PC traces, as well as interference from other components, and reduce trace capacitance. The layout contains a large ground plane either on the top or bottom surface of the board to provide signal shielding, and a convenient location to ground both the HPC, and the case of the crystal. It is very critical to have an extremely clean power supply for the HPC crystal oscillator. Ideally one would like a V_{CC} and ground plane that provide low inductance power lines to the chip. The power planes in the PC board should be decoupled with three decoupling capacitors as close to the chip as possible. A 1.0 μ F, a 0.1F, and a 0.001F dipped mica or ceramic cap should be mounted as close to the HPC as is physically possible on the board, using the shortest leads, or surface mount components. This should provide a stable power supply, and noiseless ground plane which will vastly improve the performance of the crystal oscillator network.

TABLE V. HPC	Oscillator
XTAL Frequency (MHz)	R ₁ (Ω)
2	1500
4	1200
6	910
8	750
10	600
12	470
14	390
16	300
18	220
20	180
22	150
24	120
26	100
28	75
30	62

XTAL Specifications: The crystal used was an M-TRON Industries MP-1 Se-

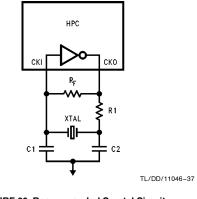


FIGURE 29. Recommended Crystal Circuit

 $\begin{array}{l} \mathsf{R}_\mathsf{F} \,=\, 3.3 \; \mathsf{M}\Omega \\ \mathsf{C}_1 \,=\, 27 \; \mathsf{p}\mathsf{F} \end{array}$

 $C_2 = 33 \text{ pF}$

 $C_L = 20 \text{ pF}$

Series Resistance is

25Ω @ 25 MHz

40Ω @ 10 MHz

600Ω @ 2 MHz

ries XTAL. "AT" cut, parallel resonant.

HPC167064 CPU

The HPC167064 CPU has a 16-bit ALU and six 16-bit registers.

Arithmetic Logic Unit (ALU)

The ALU is 16 bits wide and can do 16-bit add, subtract and shift or logic AND, OR and exclusive OR in one timing cycle. The ALU can also output the carry bit to a 1-bit C register.

Accumulator (A) Register

The 16-bit A register is the source and destination register for most I/O, arithmetic, logic and data memory access operations.

Address (B and X) Registers

The 16-bit B and X registers can be used for indirect addressing. They can automatically count up or down to sequence through data memory.

Boundary (K) Register

The 16-bit K register is used to set limits in repetitive loops of code as register B sequences through data memory.

Stack Pointer (SP) Register

The 16-bit SP register is the pointer that addresses the stack. The SP register is incremented by two for each push or call and decremented by two for each pop or return. The stack can be placed anywhere in user memory and be as deep as the available memory permits.

Program (PC) Register

The 16-bit PC register addresses program memory.

Addressing Modes

ADDRESSING MODES—ACCUMULATOR AS DESTINATION

Register Indirect

This is the "normal" mode of addressing for the HPC167064 (instructions are single-byte). The operand is the memory addressed by the B register (or X register for some instructions).

Direct

The instruction contains an 8-bit or 16-bit address field that directly points to the memory for the operand.

HPC Instruction Set Description

Indirect

The instruction contains an 8-bit address field. The contents of the WORD addressed points to the memory for the operand.

Indexed

The instruction contains an 8-bit address field and an 8- or 16-bit displacement field. The contents of the WORD addressed is added to the displacement to get the address of the operand.

Immediate

The instruction contains an 8-bit or 16-bit immediate field that is used as the operand.

Register Indirect (Auto Increment and Decrement)

The operand is the memory addressed by the X register. This mode automatically increments or decrements the X register (by 1 for bytes and by 2 for words).

Register Indirect (Auto Increment and Decrement) with Conditional Skip

The operand is the memory addressed by the B register. This mode automatically increments or decrements the B register (by 1 for bytes and by 2 for words). The B register is then compared with the K register. A skip condition is generated if B goes past K.

ADDRESSING MODES—DIRECT MEMORY AS DESTINATION

Direct Memory to Direct Memory

The instruction contains two 8- or 16-bit address fields. One field directly points to the source operand and the other field directly points to the destination operand.

Immediate to Direct Memory

The instruction contains an 8- or 16-bit address field and an 8- or 16-bit immediate field. The immediate field is the operand and the direct field is the destination.

Double Register Indirect Using the B and X Registers

Used only with Reset, Set and IF bit instructions; a specific bit within the 64 kbyte address range is addressed using the B and X registers. The address of a byte of memory is formed by adding the contents of the B register to the most significant 13 bits of the X register. The specific bit to be modified or tested within the byte of memory is selected using the least significant 3 bits of register X.

Mnemonic	Description	Action	
ARITHMETIC INSTRUC	TIONS		
ADD ADC ADDS DADC SUBC DSUBC MULT DIV DIVD	Add Add with carry Add short imm8 Decimal add with carry Subtract with carry Decimal subtract w/carry Multiply (unsigned) Divide (unsigned) Divide Double Word (unsigned)	$\begin{array}{c} MA + Meml \to MA \operatorname{carry} \to C \\ MA + Meml + CMA \operatorname{carry} \to C \\ A + \operatorname{imm8} \to A \operatorname{carry} \to C \\ MA + Meml + C \to MA (Decimal) \operatorname{carry} \to C \\ MA - Meml + C \to MA \operatorname{carry} \to C \\ MA - Meml + C \to MA (Decimal) \operatorname{carry} \to C \\ MA - Meml + C \to MA (Decimal) \operatorname{carry} \to C \\ MA^*Meml \to MA A X, 0 \to K, 0 \to C \\ MA/Meml \to MA, rem \to X, 0 \to K, carry \to C \\ X \& MA/Meml \to MA, rem \to X, 0 \to K, carry \to C \end{array}$	
IFEQ IFGT	If equal If greater than	Compare MA & Meml, Do next if equal Compare MA & Meml, Do next if MA > Meml	
AND OR XOR	Logical AND Logical OR Logical Exclusive-OR	MA and MemI \rightarrow MA MA or MemI \rightarrow MA MA xor MemI \rightarrow MA	
MEMORY MODIFY INSTRUCTIONS			
INC DECSZ	Increment Decrement, skip if 0	$\begin{array}{l} \text{Mem} + 1 \rightarrow \text{Mem} \\ \text{Mem} - 1 \rightarrow \text{Mem}, \text{Skip next if Mem} = 0 \end{array}$	

Mnemonic	Description	Action
IT INSTRUCTIONS		-
SBIT	Set bit	1 → Mem.bit
RBIT	Reset bit	$0 \rightarrow \text{Mem.bit}$
IFBIT	lf bit	If Mem.bit is true, do next instr.
	TRUCTIONS	
LD	Load	$MemI \rightarrow MA$
	Load, incr/decr X	$Mem(X) \rightarrow A, X \pm 1 \text{ (or 2)} \rightarrow X$
ST	Store to Memory	$A \rightarrow Mem$
X	Exchange	$A \longleftrightarrow Mem$
~	Exchange, incr/decr X	$A \longleftrightarrow Mem(X), X \pm 1 \text{ (or 2)} \rightarrow X$
PUSH	Push Memory to Stack	$W \rightarrow W(SP), SP+2 \rightarrow SP$
POP	Pop Stack to Memory	$SP-2 \rightarrow SP, W(SP) \rightarrow W$
LDS	Load A, incr/decr B,	$Mem(B) \rightarrow A, B \pm 1 \text{ (or 2)} \rightarrow B,$
	Skip on condition	Skip next if B greater/less than K
XS	Exchange, incr/decr B,	$Mem(B) \longleftrightarrow A, B \pm 1 \text{ (or 2)} \longrightarrow B,$
	Skip on condition	Skip next if B greater/less than K
EGISTER LOAD IMMEDI	ATE INSTRUCTIONS	
LD B	Load B immediate	$\operatorname{imm} \rightarrow B$
LD K	Load K immediate	$\operatorname{imm} \rightarrow K$
LD X	Load X immediate	$\operatorname{imm} \rightarrow X$
LD BK	Load B and K immediate	imm \rightarrow B, imm \rightarrow K
CCUMULATOR AND C IN	ISTRUCTIONS	
CLR A	Clear A	$0 \rightarrow A$
INC A	Increment A	$A + 1 \rightarrow A$
DEC A	Decrement A	$A - 1 \rightarrow A$
COMP A	Complement A	1's complement of A \rightarrow A
SWAP A	Swap nibbles of A	$A[15:12] \leftarrow A[11:8] \leftarrow A[7:4] \longleftrightarrow A[3:0]$
RRC A	Rotate A right thru C	$C \rightarrow A15 \rightarrow \ldots \rightarrow A0 \rightarrow C$
RLC A	Rotate A left thru C	$C \leftarrow A15 \leftarrow \ldots \leftarrow A0 \leftarrow C$
SHR A	Shift A right	$0 \rightarrow A15 \rightarrow \ldots \rightarrow A0 \rightarrow C$
SHL A	Shift A left	$C \leftarrow A15 \leftarrow \ldots \leftarrow A0 \leftarrow 0$
SC	Set C	$1 \rightarrow C$
RC	Reset C	$0 \rightarrow C$
IFC	IF C	Do next if $C = 1$
IFNC	IF not C	Do next if C = 0
RANSFER OF CONTROL		
JSRP	Jump subroutine from table	$PC \rightarrow W(SP), SP + 2 \rightarrow SP$
		$W(table #) \rightarrow PC$
JSR	Jump subroutine relative	$PC \rightarrow W(SP), SP + 2 \rightarrow SP, PC + \# \rightarrow PC$
JSRL	lump subrouting long	(#is + 1025 to -1023) PC \rightarrow W(SP),SP+2 \rightarrow SP,PC+ # \rightarrow PC
JP	Jump subroutine long Jump relative short	$PC \rightarrow W(SP), SP + 2 \rightarrow SP, PC + # \rightarrow PC$ $PC + # \rightarrow PC(# is + 32 to - 31)$
	· · · · · · · · · · · · · · · · · · ·	$PC+\# \rightarrow PC(\# is + 32 to - 31)$ $PC+\# \rightarrow PC(\# is + 257 to - 255)$
JMP JMPL	Jump relative Jump relative long	$PC + # \rightarrow PC$
JID	Jump indirect at PC $+$ A	$PC+A+1 \rightarrow PC$
JIDW		then Mem(PC) + PC \rightarrow PC
NOP	No Operation	$PC + 1 \rightarrow PC$
RET	Return	$SP-2 \rightarrow SP,W(SP) \rightarrow PC$
RETSK	Return then skip next	$SP-2 \rightarrow SP,W(SP) \rightarrow PC, \& skip$
RETI	Return from interrupt	$SP-2 \rightarrow SP,W(SP) \rightarrow PC$, interrupt re-enabled
Note: W is 16-bit word of mem	·	
	direct memory (8-bit or 16-bit)	
Mem is 8-bit byte or 16-b	it word of memory	
Meml is 8-bit or 16-bit me	emory or 8-bit or 16-bit immediate data	
imm is 8-bit or 16-bit imm	nediate data	
imm8 is 8-bit immediate of	tata only	

Code Efficiency

One of the most important criteria of a single chip microcontroller is code efficiency. The more efficient the code, the more features that can be put on a chip. The memory size on a chip is fixed so if code is not efficient, features may have to be sacrificed or the programmer may have to buy a larger, more expensive version of the chip.

The HPC family has been designed to be extremely codeefficient. The HPC looks very good in all the standard coding benchmarks; however, it is not realistic to rely only on benchmarks. Many large jobs have been programmed onto the HPC, and the code savings over other popular microcontrollers has been considerable.

Reasons for this saving of code include the following:

SINGLE BYTE INSTRUCTIONS

The majority of instructions on the HPC167064 are singlebyte. There are two especially code-saving instructions: JP is a 1-byte jump. True, it can only jump within a range of plus or minus 32, but many loops and decisions are often within a small range of program memory. Most other micros need 2-byte instructions for any short jumps.

JSRP is a 1-byte subroutine call. The user makes a table of the 16 most frequently called subroutines and these calls will only take one byte. Most other micros require two and even three bytes to call a subroutine. The user does not have to decide which subroutine addresses to put into the table; the assembler can give this information.

EFFICIENT SUBROUTINE CALLS

The 2-byte JSR instructions can call any subroutine within plus or minus 1k of program memory.

MULTIFUNCTION INSTRUCTIONS FOR DATA MOVE-MENT AND PROGRAM LOOPING

The HPC167064 has single-byte instructions that perform multiple tasks. For example, the XS instruction will do the following:

- 1. Exchange A and memory pointed to by the B register
- 2. Increment or decrement the B register
- 3. Compare the B register to the K register
- 4. Generate a conditional skip if B has passed K

The value of this multipurpose instruction becomes evident when looping through sequential areas of memory and exiting when the loop is finished.

BIT MANIPULATION INSTRUCTIONS

Any bit of memory, I/O or registers can be set, reset or tested by the single byte bit instructions. The bits can be addressed directly or indirectly. Since all registers and I/O are mapped into the memory, it is very easy to manipulate specific bits to do efficient control.

DECIMAL ADD AND SUBTRACT

This instruction is needed to interface with the decimal user world.

It can handle both 16-bit words and 8-bit bytes.

The 16-bit capability saves code since many variables can be stored as one piece of data and the programmer does not have to break his data into two bytes. Many applications store most data in 4-digit variables. The HPC167064 supplies 8-bit byte capability for 2-digit variables and literal variables.

MULTIPLY AND DIVIDE INSTRUCTIONS

The HPC167064 has 16-bit multiply, 16-bit by 16-bit divide, and 32-bit by 16-bit divide instructions. This saves both code and time. Multiply and divide can use immediate data or data from memory. The ability to multiply and divide by immediate data saves code since this function is often needed for scaling, base conversion, computing indexes of arrays, etc.

Development Support

The HPC167064 acts as a stand alone emulator for either the HPC16083 or the HPC16064. No separate development tool is thus provided to support this emulator device. The user will use either the HPC16083 or the HPC16064 (depending on which device is in use) development tools to develop and debug the application hardware and software in their target as normally done for the non-emulator HPC devices. The application software can then be programmed in the on-chip EPROM and the HPC167064 can then be plugged in the target system to run the application like a regular masked ROM device. The HPC167064 can be programmed using a DATA I/O UNISITE with pinsite module.

To support the security feature of the HPC167064, a software switch is provided with the linker (under PROMHPC) which will generate an encrypted hex file for the user. The purpose is to be able to compare this software generated encrypted data with the encrypted data produced by the actual chip to provide a way to verify on-chip EPROM code after security has been enabled. For details of how to generate encrypted data and all other HPC167064 features, refer to the Appendix K of the HPC Family User's Manual.

Development Support (Continued)

PROGRAMMING SUPPORT

The HPC167064 EPROM array can be programmed using a DATA I/O Unisite model with a pinsite module. No adaptor board is required with the DATA I/O programmer. Programming of the configuration bytes and security bits is described in the HPC Family User's Manual.

HOW TO ORDER

To order a complete development package, select the section for the microcontroller to be developed and order the parts listed.

Development Tools Selection Table

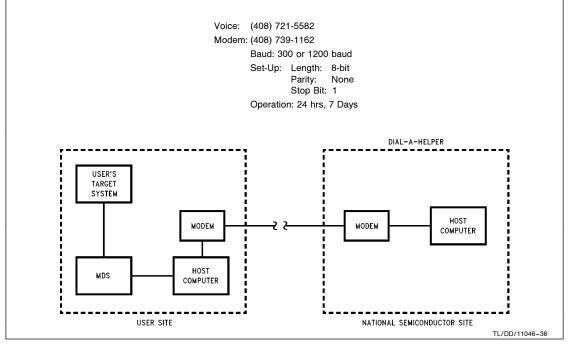
Order Number	Description	Includes	Manual Number
HPC-DEV-IBMA	Assembler/Linker/Librarian Package for IBM PC/AT	HPC Assembler/Linker/Librarian User's Manual	424410836-001
HPC-DEV-IBMC	C Compiler Assembler/Linker/Librarian Package for IBM PC/AT	HPC C Compiler User's Manual HPC Assembler/Linker/Librarian User's Manual	424410883-001 424410836-001

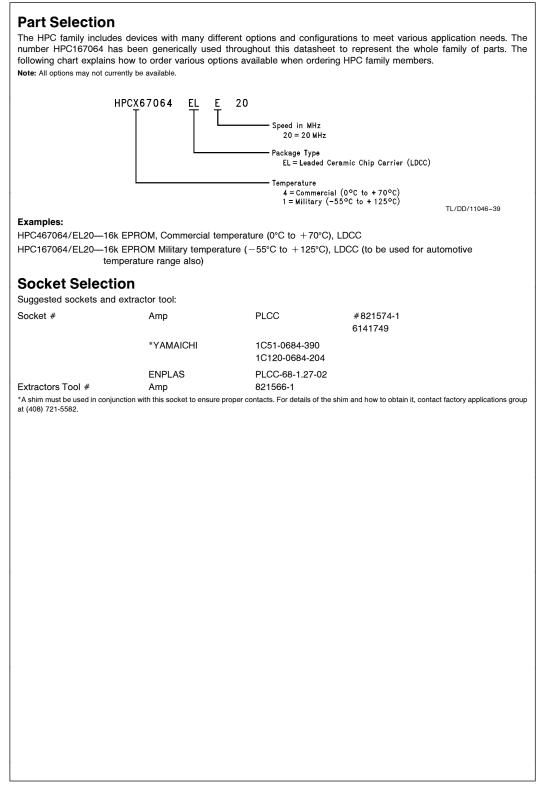
DIAL-A-HELPER

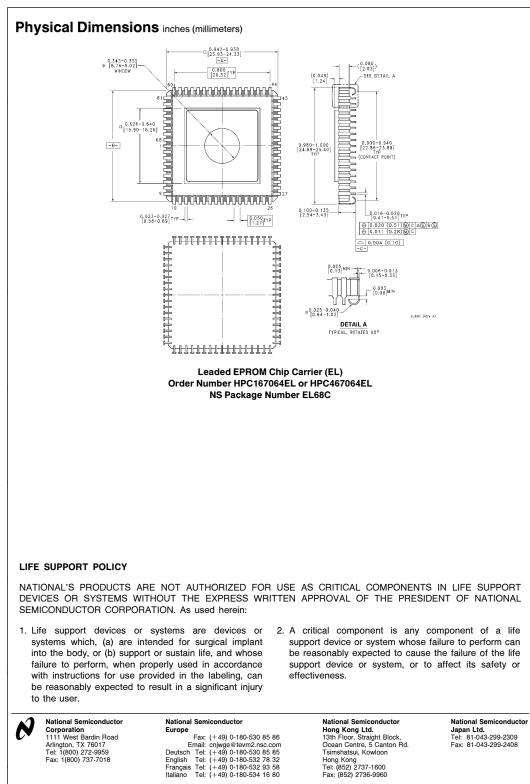
Dial-A-Helper is a service provided by the Microcontroller Applications group. Dial-A-Helper is an Electronic Bulletin Board Information system and, additionally, provides the capability of remotely accessing the development system at a customer site.

INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Micro-controller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities can be found. The minimum requirement for accessing Dial-A-Helper is a Hayes compatible modem.


If the user has a PC with a communications package then files from the FILE SECTION can be downloaded to disk for later use.


Order P/N: MDS-DIAL-A-HLP


Information System Package Contains: Dial-A-Helper Users Manual Public Domain Communications Software

FACTORY APPLICATIONS SUPPORT

Dial-A-Helper also provides immediate factory applications support. If a user is having difficulty in operating a MDS, messages can be left on our electronic bulletin board, which we will respond to.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.